Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The central image of a gravitationally lensed quasar


A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens1,2, but hitherto almost all lensed objects have two or four images. The missing ‘central’ images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations3,4,5,6,7. There are five candidates for central images, but in one case the third image is not necessarily the central one8,9,10, and in the others the putative central images might be foreground sources11,12,13,14,15. Here we report a secure identification of a central image, based on radio observations of one of the candidates14. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of <2 × 108 solar masses (M), and the galaxy's surface density at the location of the central image is > 20,000M pc-2, which is in agreement with expections based on observations of galaxies that are much closer to the Earth.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A radio map of the three components A, B and C of gravitational lens PMN J1632–0033.
Figure 2: The central radio component and the bright quasar images have similar radio spectra.


  1. Dyer, C. C. & Roeder, R. C. Possible multiple imaging by spherical galaxies. Astrophys. J. 238, L67–L70 (1980)

    Article  ADS  Google Scholar 

  2. Burke, W. L. Multiple gravitational imaging by distributed masses. Astrophys. J. 244, L1 (1981)

    Article  ADS  Google Scholar 

  3. Narasimha, D., Subramanian, K. & Chitre, S. M. “Missing image” in gravitational lens systems? Nature 321, 45–46 (1986)

    Article  ADS  Google Scholar 

  4. Wallington, S. & Narayan, R. The influence of core radius on gravitational lensing by elliptical lenses. Astrophys. J. 403, 517–529 (1993)

    Article  ADS  Google Scholar 

  5. Rusin, D. & Ma, C.-P. Constraints on the inner mass profiles of lensing galaxies from missing odd images. Astrophys. J. 549, L33–L37 (2001)

    Article  ADS  Google Scholar 

  6. Evans, N. W. & Hunter, C. Lensing properties of cored galaxy models. Astrophys. J. 575, 68–86 (2002)

    Article  ADS  Google Scholar 

  7. Keeton, C. R. Lensing and the centers of distant early-type galaxies. Astrophys. J. 582, 17–29 (2003)

    Article  ADS  Google Scholar 

  8. Muñoz, J. A., Kochanek, C. S. & Keeton, C. R. Cusped mass models of gravitational lenses. Astrophys. J. 558, 657–665 (2001)

    Article  ADS  Google Scholar 

  9. Lewis, G. F., Carilli, C., Papadopoulos, P. & Ivison, R. J. Resolved nuclear CO(1–0) emission in APM 08279 + 5255: gravitational lensing by a naked cusp? Mon. Not. R. Astron. Soc. 330, L15–L18 (2002)

    CAS  Article  ADS  Google Scholar 

  10. Lewis, G. F. et al. Spatially resolved STIS spectra of the gravitationally lensed broad absorption line quasar APM082791 + 5255: the nature of component C and evidence for microlensing. Mon. Not. R. Astron. Soc. 334, L7–L10 (2002)

    Article  ADS  Google Scholar 

  11. Gorenstein, M. V. et al. Detection of a compact radio source near the center of a gravitational lens: quasar image or galactic core? Science 219, 54–56 (1983)

    CAS  Article  ADS  Google Scholar 

  12. Chen, G. & Hewitt, J. N. Multifrequency radio images of the Einstein ring gravitational lens MG 1131 + 0456. Astrophys. J. 106, 1719–1728 (1993)

    ADS  Google Scholar 

  13. Fassnacht, C. et al. B2045 + 265: A new four-image gravitational lens from CLASS. Astron. J. 117, 658–670 (1999)

    CAS  Article  ADS  Google Scholar 

  14. Winn, J. N. et al. PMN J1632–0033: a new gravitationally lensed quasar. Astron. J. 123, 10–19 (2002)

    Article  ADS  Google Scholar 

  15. Winn, J. N., Rusin, D. & Kochanek, C. S. Investigation of the possible third image and mass models of the gravitational lens PMN J1632–0033. Astrophys. J. 587, 80–89 (2003)

    Article  ADS  Google Scholar 

  16. Winn, J. N., Kochanek, C. S., Keeton, C. R. & Lovell, J. E. J. The quintuple quasar: radio and optical observations. Astrophys. J. 590, 26–38 (2003)

    Article  ADS  Google Scholar 

  17. Keeton, C. R. & Winn, J. N. The quintuple quasar: mass modeling and interpretation. Astrophys. J. 590, 39–51 (2003)

    Article  ADS  Google Scholar 

  18. Narayan, R., Blandford, R. & Nityananda, R. Multiple imaging of quasars by galaxies and clusters. Nature 310, 112–115 (1984)

    Article  ADS  Google Scholar 

  19. Subramanian, K., Chitre, S. M. & Narasimha, D. Minilensing of multiply imaged quasars: flux variations and vanishing of images. Astrophys. J. 289, 37–51 (1985)

    Article  ADS  Google Scholar 

  20. Faber, S. et al. The centers of early-type galaxies with HST. IV. Central parameter relations. Astron. J. 114, 1771–1796 (1997)

    Article  ADS  Google Scholar 

  21. Mao, S., Witt, H. J. & Koopmans, L. V. E. The influence of central black holes on gravitational lenses. Mon. Not. R. Astron. Soc. 323, 301–307 (2001)

    Article  ADS  Google Scholar 

  22. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L9–L12 (2000)

    Article  ADS  Google Scholar 

  23. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000)

    Article  ADS  Google Scholar 

  24. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002)

    Article  ADS  Google Scholar 

  25. Mezger, P. G. & Henderson, A. P. Galactic H ii regions I. Observations of their continuum radiation at the frequency 5 GHz. Astrophys. J. 147, 471–489 (1967)

    Article  ADS  Google Scholar 

  26. Beckert, T. et al. Anatomy of the Sagittarius A complex. V. Interpolation of the Sgr A* spectrum. Astron. Astrophys. 307, 450–458 (1996)

    ADS  Google Scholar 

  27. Taylor, G. B. The symmetric parsec-scale jets of the radio galaxy Hydra A. Astrophys. J. 470, 394–402 (1996)

    CAS  Article  ADS  Google Scholar 

  28. Walker, R. C. et al. VLBA absorption imaging of ionized gas associated with the accretion disk in NGC 1275. Astrophys. J. 530, 233–244 (2000)

    CAS  Article  ADS  Google Scholar 

  29. Sheperd, M. C. in Astronomical Data Analysis Software and Systems VI (eds Hunt, G. & Payne, H.E.) 77–84 (ASP Conf. Ser. 125, ASP, San Francisco, 1997)

    Google Scholar 

Download references


We thank S. Doeleman, D. Harris and P. Schechter for discussions, and J. Bullock for comments on the manuscript. J.N.W. acknowledges the support of the National Science Foundation (NSF) through an Astronomy and Astrophysics Postdoctoral Fellowship. The VLA is part of the National Radio Astronomy Observatory, an NSF facility operated under cooperative agreement by Associated Universities, Inc.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joshua N. Winn.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winn, J., Rusin, D. & Kochanek, C. The central image of a gravitationally lensed quasar. Nature 427, 613–615 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing