Subjects

Abstract

In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10-18 s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond (1 fs = 10-15 s) extreme ultraviolet (XUV) light pulses1 has stimulated the extension of techniques of femtochemistry2 into the attosecond regime3,4. Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse5 obtains ‘tomographic images’ of the time-momentum distribution of the ejected electrons. Tomographic images of primary (photo)electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary (Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current 750-nm laser probe and 100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Attosecond metrology. Nature 414, 509–513 (2001)

  2. 2.

    Femtochemistry: atomic-scale dynamics of the chemical bond (adapted from the Nobel Lecture). J. Phys. Chem. A 104, 5660–5694 (2000)

  3. 3.

    et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

  4. 4.

    , , , & Quantum theory of attosecond XUV pulse measurement by laser-dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

  5. 5.

    et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003)

  6. 6.

    , & Direct linear measurement of ultrashort light pulses with a picosecond streak camera. Opt. Commun. 2, 391 (1971)

  7. 7.

    , & Image-converter streak camera with picosecond resolution. Appl. Phys. Lett. 18, 354 (1971)

  8. 8.

    & Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571–579 (1993)

  9. 9.

    , , & Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002)

  10. 10.

    & High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993)

  11. 11.

    , & High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993)

  12. 12.

    , , & Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993)

  13. 13.

    Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

  14. 14.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

  15. 15.

    , & High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997)

  16. 16.

    , , & Coherent XUV generation from gases ionized by several cycle optical pulses. Phys. Rev. Lett. 79, 2971–2974 (1997)

  17. 17.

    , , & Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett. 81, 1837–1840 (1998)

  18. 18.

    , & Phase sensitivity of high-order harmonic generation with few-cycle laser pulses. J. Opt. Soc. Am. B 16, 669–674 (1999)

  19. 19.

    et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

  20. 20.

    et al. Attosecond synchronisation of high-harmonic soft X-rays. Science 302, 1540–1543 (2003)

  21. 21.

    , , , & Direct observation of attosecond light bunching. Nature 426, 267–271 (2003)

  22. 22.

    et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)

Download references

Acknowledgements

This work was sponsored by the Fonds zur Förderung der wissenschaftlichen Forschung (Austria), the Deutsche Forschungsgemeinschaft and the Volkswagenstiftung (Germany) and by the European Union's Human Potential Programme.

Author information

Author notes

    • R. Kienberger
    • , E. Goulielmakis
    •  & M. Uiberacker

    These authors contributed equally to this work

Affiliations

  1. Institut für Photonik, Technische Universität Wien, Gusshausstraße 27, A-1040 Wien, Austria

    • R. Kienberger
    • , E. Goulielmakis
    • , M. Uiberacker
    • , A. Baltuska
    • , V. Yakovlev
    • , A. Scrinzi
    •  & F. Krausz
  2. Institut für Spanlose Fertigung und Hochleistungslasertechnik, Technische Universität Wien, Franz-Grillstr. 1, Arsenal Obj. 207, A-1030 Wien, Austria

    • F. Bammer
  3. Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany

    • Th. Westerwalbesloh
    • , U. Kleineberg
    • , U. Heinzmann
    •  & M. Drescher
  4. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany

    • F. Krausz

Authors

  1. Search for R. Kienberger in:

  2. Search for E. Goulielmakis in:

  3. Search for M. Uiberacker in:

  4. Search for A. Baltuska in:

  5. Search for V. Yakovlev in:

  6. Search for F. Bammer in:

  7. Search for A. Scrinzi in:

  8. Search for Th. Westerwalbesloh in:

  9. Search for U. Kleineberg in:

  10. Search for U. Heinzmann in:

  11. Search for M. Drescher in:

  12. Search for F. Krausz in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to F. Krausz.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature02277

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.