Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic transient recorder

Abstract

In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10-18 s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond (1 fs = 10-15 s) extreme ultraviolet (XUV) light pulses1 has stimulated the extension of techniques of femtochemistry2 into the attosecond regime3,4. Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse5 obtains ‘tomographic images’ of the time-momentum distribution of the ejected electrons. Tomographic images of primary (photo)electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary (Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current 750-nm laser probe and 100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the atomic transient recorder.
Figure 2: Electron streak records in specific cases.
Figure 3: Streaked photoelectron spectra recorded at a fixed delay of probe laser light.
Figure 4: ATR measurement: a series of tomographic projections (streaked kinetic energy spectra) of the initial time–momentum distribution of photoelectrons knocked out by a single sub-fs XUV pulse (in false-colour representation).
Figure 5: Selected streaked spectra from the ATR measurement of photoelectron emission from neon excited with a 93-eV sub-fs pulse (Fig. 4).

Similar content being viewed by others

References

  1. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Zewail, A. Femtochemistry: atomic-scale dynamics of the chemical bond (adapted from the Nobel Lecture). J. Phys. Chem. A 104, 5660–5694 (2000)

    Article  CAS  Google Scholar 

  3. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser-dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

    Article  ADS  Google Scholar 

  5. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Bradley, D. J., Liddy, B. & Sleat, W. E. Direct linear measurement of ultrashort light pulses with a picosecond streak camera. Opt. Commun. 2, 391 (1971)

    Article  ADS  Google Scholar 

  7. Schelev, M. Ya., Richardson, M. C. & Alcock, A. J. Image-converter streak camera with picosecond resolution. Appl. Phys. Lett. 18, 354 (1971)

    Article  ADS  Google Scholar 

  8. Kane, D. J. & Trebino, R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571–579 (1993)

    Article  ADS  Google Scholar 

  9. Sekikawa, T., Katsura, T., Miura, S. & Watanabe, S. Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002)

    Article  ADS  Google Scholar 

  10. L'Huillier, A. & Balcou, Ph. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993)

    Article  ADS  CAS  Google Scholar 

  11. Macklin, J. J., Kmetec, J. D. & Gordon, C. L. III High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993)

    Article  ADS  CAS  Google Scholar 

  12. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  CAS  Google Scholar 

  14. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Kan, C., Burnett, N. H., Capjack, C. E. & Rankin, R. Coherent XUV generation from gases ionized by several cycle optical pulses. Phys. Rev. Lett. 79, 2971–2974 (1997)

    Article  ADS  CAS  Google Scholar 

  17. de Bohan, A., Antoine, P., Milosevic, D. B. & Piraux, B. Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett. 81, 1837–1840 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Tempea, G., Geissler, M. & Brabec, T. Phase sensitivity of high-order harmonic generation with few-cycle laser pulses. J. Opt. Soc. Am. B 16, 669–674 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Mairesse, Y. et al. Attosecond synchronisation of high-harmonic soft X-rays. Science 302, 1540–1543 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Fonds zur Förderung der wissenschaftlichen Forschung (Austria), the Deutsche Forschungsgemeinschaft and the Volkswagenstiftung (Germany) and by the European Union's Human Potential Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Krausz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienberger, R., Goulielmakis, E., Uiberacker, M. et al. Atomic transient recorder. Nature 427, 817–821 (2004). https://doi.org/10.1038/nature02277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02277

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing