Mixing, volatile loss and compositional change during impact-driven accretion of the Earth

Abstract

The degree to which efficient mixing of new material or losses of earlier accreted material to space characterize the growth of Earth-like planets is poorly constrained and probably changed with time. These processes can be studied by parallel modelling of data from different radiogenic isotope systems. The tungsten isotope composition of the silicate Earth yields a model timescale for accretion that is faster than current estimates based on terrestrial lead and xenon isotope data and strontium, tungsten and lead data for lunar samples. A probable explanation for this is that impacting core material did not always mix efficiently with the silicate portions of the Earth before being added to the Earth's core. Furthermore, tungsten and strontium isotope compositions of lunar samples provide evidence that the Moon-forming impacting protoplanet Theia was probably more like Mars, with a volatile-rich, oxidized mantle. Impact-driven erosion was probably a significant contributor to the variations in moderately volatile element abundance and oxidation found among the terrestrial planets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The change in mass fraction of the Earth as a function of time.
Figure 2: The age information that can be derived from W isotope data for the Earth and Moon at the present time is strongly model dependent.
Figure 3: The effects of disequilibrium on tungsten isotopic changes in the BSE can be large.
Figure 4: Inner Solar System primitive mantles.

References

  1. 1

    Yin, Q. Z. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Schönberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002)

    ADS  Article  Google Scholar 

  4. 4

    Jacobsen, S. B. & Harper, C. L. Jr in Earth Processes: Reading the Isotope Code (eds Basu, A. & Hart, S.) 47–74 (AGU, Washington DC, 1996)

    Google Scholar 

  5. 5

    Halliday, A. N. Terrestrial accretion rates and the origin of the Moon. Earth Planet. Sci. Lett. 176, 17–30 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Cameron, A. G. W. & Benz, W. Origin of the Moon and the single impact hypothesis IV. Icarus 92, 204–216 (1991)

    ADS  Article  Google Scholar 

  7. 7

    Canup, R. M. & Asphaug, E. Origin of the moon in a giant impact near the end of the Earth's formation. Nature 412, 708–712 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yoshino, T., Walter, M. J. & Katsura, T. Core formation in planetesimals triggered by permeable flow. Nature 422, 154–157 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 231–249 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  11. 11

    Halliday, A. N. & Porcelli, D. In search of lost planets – the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett. 192, 545–559 (2001)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Humayun, M. & Clayton, R. N. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59, 2131–2151 (1995)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–555 (Lunar Planetary Institute, Houston, 1986)

    Google Scholar 

  14. 14

    Taylor, S. R. & Norman, M. D. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 29–43 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  15. 15

    Allègre, C. J., Manhès, G. & Göpel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995)

    ADS  Article  Google Scholar 

  16. 16

    Lee, D.-C. & Halliday, A. N. Hafnium–tungsten chronometry and the timing of terrestrial core formation. Nature 378, 771–774 (1995)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Galer, S. J. G. & Goldstein, S. L. in Earth Processes: Reading the Isotope Code (eds Basu, A. & Hart, S.) 75–98 (AGU, Washington DC, 1996)

    Google Scholar 

  18. 18

    Hayashi, C., Nakazawa, K. & Nakagawa, Y. in Protostars and Planets II (eds Black, D. C. & Matthews, M. S.) 1100–1153 (Univ. Arizona Press, Tucson, 1985)

    Google Scholar 

  19. 19

    Sasaki, S. & Nakazawa, K. Metal-silicate fractionation in the growing Earth: energy source for the terrestrial magma ocean. J. Geophys. Res. 91, B9231–B9238 (1986)

    ADS  Article  Google Scholar 

  20. 20

    Carlson, R. W. & Lugmair, G. W. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) 25–44 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  21. 21

    Newsom, H. E. in Global Earth Physics, A Handbook of Physical Constants (ed. Ahrens, T. J.) 159–189 (AGU Reference Shelf 1, American Geophysical Union, Washington DC, 1995)

    Google Scholar 

  22. 22

    Lissauer, J. J. Time-scales for planetary accretion and the structure of the protoplanetry disk. Icarus 69, 249–265 (1987)

    ADS  Article  Google Scholar 

  23. 23

    Newsom, H. E. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 273–288 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  24. 24

    Patterson, C. C. Age of meteorites and the Earth. Geochim. Cosmochim. Acta 10, 230–237 (1956)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Murphy, D. T., Kamber, B. S. & Collerson, K. D. A refined solution to the first terrestrial Pb-isotope paradox. J. Petrol. 44, 39–53 (2003)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kamber, B. S. & Collerson, K. D. Origin of ocean-island basalts: a new model based on lead and helium isotope systematics. J. Geophys. Res. 104, 25479–25491 (1999)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kramers, J. D. & Tolstikhin, I. N. Two terrestrial lead isotope paradoxes, forward transport modeling, core formation and the history of the continental crust. Chem. Geol. 139, 75–110 (1997)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Galer, S. J. G. & Goldstein, S. L. Depleted mantle Pb isotopic evolution using conformable ore leads. Terra Abstr. 3, 485–486 (1991)

    Google Scholar 

  29. 29

    Liew, T. C., Milisenda, C. C. & Hofmann, A. W. Isotopic contrasts, chronology of element transfers and high-grade metamorphism: the Sri Lanka Highland granulites, and the Lewisian (Scotland) and Nuk (S.W. Greenland) gneisses. Geol. Rundsch. 80, 279–288 (1991)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Kwon, S.-T., Tilton, G. R. & Grünenfelder, M. H. in Carbonatites—Genesis and Evolution (ed. Bell, K.) 360–387 (Unwin-Hyman, London, 1989)

    Google Scholar 

  31. 31

    Allègre, C. J. & Lewin, E. Chemical structure and history of the Earth: Evidence from global non-linear inversion of isotopic data in a three box model. Earth Planet. Sci. Lett. 96, 61–88 (1989)

    ADS  Article  Google Scholar 

  32. 32

    Allègre, C. J., Lewin, E. & Dupré, B. A coherent crust-mantle model for the uranium-thorium-lead isotopic system. Chem. Geol. 70, 211–234 (1988)

    ADS  Article  Google Scholar 

  33. 33

    Zartman, R. E. & Haines, S. M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—a case for bi-directional transport. Geochim. Cosmochim. Acta 52, 1327–1339 (1988)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Davies, G. F. Geophysical and isotopic constraints on mantle convection: An interim synthesis. J. Geophys. Res. 89, 6017–6040 (1984)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Doe, B. R. & Zartman, R. E. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 22–70 (Wiley, New York, 1979)

    Google Scholar 

  36. 36

    Davies, G. F. Geophysically constrained mass flows and the 40Ar budget: a degassed lower mantle? Earth Planet. Sci. Lett. 166, 149–162 (1999)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Azbel, I. Y., Tolstikhin, I. N., Kramers, J. D., Pechernikova, G. V. & Vityazev, A. V. Core growth and siderophile element depletion of the mantle during homogeneous Earth accretion. Geochim. Cosmochim. Acta 57, 2889–2898 (1993)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Ozima, M. & Podosek, F. A. Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. 104, 25493–25499 (1999)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Porcelli, D., Cassen, P. & Woolum, D. Deep Earth rare gases: Initial inventories, capture from the solar nebula and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Benz, W. & Cameron, A. G. W. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 61–67 (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  41. 41

    Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. A lunar cataclysm at 3.95 AE and the structure of the lunar crust. Lunar Planet. Sci. IV, 723–725 (1973)

    ADS  Google Scholar 

  42. 42

    Hanan, B. B. & Tilton, G. R. 60025: Relict of primitive lunar crust? Earth Planet. Sci. Lett. 84, 15–21 (1987)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Carlson, R. W. & Lugmair, G. W. The age of ferroan anorthosite 60025: oldest crust on a young Moon? Earth Planet. Sci. Lett. 90, 119–130 (1988)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Lee, D.-C., Halliday, A. N., Snyder, G. A. & Taylor, L. A. Age and origin of the Moon. Science 278, 1098–1103 (1997)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Leya, I., Wieler, R. & Halliday, A. N. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry. Earth Planet. Sci. Lett. 175, 1–12 (2000)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Lee, D.-C., Halliday, A. N., Leya, I., Wieler, R. & Wiechert, U. Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet. Sci. Lett 198, 267–274 (2002)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Jones, J. H. & Palme, H. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) 197–216 (Univ. Arizona Press, 2000)

    Google Scholar 

  49. 49

    Wiechert, U. et al. Oxygen isotopes and the Moon-forming giant impact. Science 294, 345–348 (2001)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Righter, K. & Drake, M. J. Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett. 171, 383–399 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This paper benefited from discussions with, and comments from, T. Ahrens, W. Benz, R. Canup, R. Carlson, M. Drake, T. Grove, M. Humayun, T. Kleine, K. Mezger, C. Münker, H. Palme, D. Porcelli, M. Schönbächler, D. Stevenson, M. Walter, R. Wieler and H. Williams and was supported by ETH and Swiss National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alex N. Halliday.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Halliday, A. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004). https://doi.org/10.1038/nature02275

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.