Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A newly discovered Roseobacter cluster in temperate and polar oceans

Abstract

Bacterioplankton phylotypes of α-Proteobacteria have been detected in various marine regions, but systematic biogeographical studies of their global distribution are missing. α-Proteobacteria comprise one of the largest fractions of heterotrophic marine bacteria1,2 and include two clades, SAR11 and Roseobacter, which account for 26 and 16% of 16S ribosomal RNA gene clones retrieved from marine bacterioplankton3. The SAR11 clade attracted much interest because related 16S rRNA gene clones were among the first groups of marine bacteria to be identified by cultivation-independent approaches4 and appear to dominate subtropical surface bacterioplankton communities5. Here we report on the global distribution of a newly discovered cluster affiliated to the Roseobacter clade, comprising only as-yet-uncultured phylotypes. Bacteria of this cluster occur from temperate to polar regions with highest abundance in the Southern Ocean, but not in tropical and subtropical regions. Between the south Atlantic subtropical front and Antarctica, we detected two distinct phylotypes, one north and one south of the polar front, indicating that two adjacent but different oceanic provinces allow the persistence of distinct but closely related phylotypes. These results suggest that the global distribution of major marine bacterioplankton components is related to oceanic water masses and controlled by their environmental and biogeochemical properties.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Phylogenetic trees showing the affiliation of the RCA cluster 16S rRNA gene sequences within α-Proteobacteria.
Figure 2: Distribution of RCA-cluster-affiliated phylotypes.

References

  1. Hagström, A. et al. Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl. Environ. Microbiol. 68, 3628–3633 (2002)

    Article  Google Scholar 

  2. Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 5116–5122 (2000)

    CAS  Article  Google Scholar 

  3. Giovannoni, S. & Rappé, M. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 47–84 (Wiley-Liss, New York, 2000)

    Google Scholar 

  4. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990)

    ADS  CAS  Article  Google Scholar 

  5. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Schut, F. et al. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 2150–2160 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Muyzer, G. et al. in Molecular Microbial Ecology Manual (eds Akkermans, A. D. L., van, Elsas, J. D. & de Bruijn, F. J.) Ch. 3.4.4, 1–27 (Kluwer Academic, Dordrecht, 1998)

    Google Scholar 

  8. American Public Health Association. Standard Methods for Examination of Water and Wastewater Including Bottom Sediments and Sludge 604–609 (APHA, Washington DC, 1969)

    Google Scholar 

  9. Zubkov, M. V. et al. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ. Microbiol. 3, 304–311 (2001)

    CAS  Article  Google Scholar 

  10. González, J. M. et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl. Environ. Microbiol. 66, 4237–4246 (2000)

    Article  Google Scholar 

  11. Bano, N. & Hollibaugh, J. T. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68, 505–518 (2002)

    CAS  Article  Google Scholar 

  12. Gosink, J. J., Herwig, R. P. & Staley, J. T. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov. nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst. Appl. Microbiol. 20, 356–365 (1997)

    Article  Google Scholar 

  13. Fuchs, B. M., Zubkov, M. V., Sahm, K., Burkill, P. H. & Amann, R. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ. Microbiol. 2, 191–201 (2000)

    CAS  Article  Google Scholar 

  14. Gonzalez, J. M. & Moran, M. A. Numerical dominance of a group of marine bacteria in the α-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63, 4237–4242 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rappé, M. S., Kemp, P. F. & Giovannoni, S. J. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol. Oceanogr. 42, 811–826 (1997)

    ADS  Article  Google Scholar 

  16. Longhurst, A. Ecological Geography of the Sea Ch. 10, 339–365 (Academic, San Diego, CA, 1998)

    Google Scholar 

  17. Staley, J. T. & Gosink, J. J. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53, 198–215 (1999)

    Article  Google Scholar 

  18. Fuchs, B. M., Glöckner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000)

    CAS  Article  Google Scholar 

  19. Beja, O. et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415, 630–633 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Kolber, Z. S. et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292, 2492–2495 (2001)

    CAS  Article  Google Scholar 

  21. Ward, B. B. & O'Mullan, G. D. Worldwide distribution of Nitrosococcus oceani, a marine ammonia-oxidizing γ-proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. Appl. Environ. Microbiol. 68, 4153–4157 (2002)

    CAS  Article  Google Scholar 

  22. Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 1317, 91–100 (2002)

    Google Scholar 

  23. Field, K. et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63, 63–70 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Martinez, J. & Rodriguez-Valera, F. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol. Ecol. 9, 935–948 (2000)

    CAS  Article  Google Scholar 

  25. Selje, N. & Simon, M. Composition and spatio-temporal dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquat. Microb. Ecol. 30, 221–236 (2003)

    Article  Google Scholar 

  26. Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rRNA fragments. Arch. Microbiol. 164, 165–172 (1995)

    CAS  Article  Google Scholar 

  27. Glöckner, F. O., Fuchs, B. M. & Amann, R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 3721–3726 (1999)

    PubMed  PubMed Central  Google Scholar 

  28. Glöckner, F. O. et al. An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst. Appl. Microbiol. 19, 403–406 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Brinkmeyer, A. Bruns, B. Engelen, S. Germer, H.-P. Grossart, K. Pohlmann, U. Saint-Paul, G. Steward, M. Taylor, A. Teske and W. Zwisler for providing us with samples from various oceanic regions, A. Schlingloff for assistance in sequencing, and D. Dotschkal for FISH and puf gene analyses. We are grateful to D. L. Kirchman, M. A. Moran and U. Riebesell for suggestions on earlier versions of this manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard Simon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Selje, N., Simon, M. & Brinkhoff, T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427, 445–448 (2004). https://doi.org/10.1038/nature02272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02272

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing