Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein degradation and protection against misfolded or damaged proteins

Abstract

The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The ubiquitin–proteasome pathway.

References

  1. Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  Google Scholar 

  2. Goldberg, A. L. & Dice, J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43, 835–869 (1974).

    Article  CAS  Google Scholar 

  3. Sherman, M. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32 (2001).

    Article  CAS  Google Scholar 

  4. Goldberg, A. L. Degradation of abnormal proteins in E. coli. Proc. Natl Acad. Sci. USA 69, 422–426 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Zwickl, P., Goldberg, A. L. & Baumeister, W. in Proteasomes: The World of Regulatory Proteolysis (eds Wolf, D. H. & Hilt, W.) 8–20 (Landes Bioscience, Georgetown, Texas, 2000).

    Google Scholar 

  6. Etlinger, J. & Goldberg, A. L. A soluble, ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl Acad. Sci. USA. 74, 54–58 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Klemes, Y., Etlinger, J. D. & Goldberg, A. L. Properties of proteins degraded rapidly in reticulocytes: intracellular aggregation of the globin molecules prior to hydrolysis. J. Biol. Chem. 256, 8436–8444 (1981).

    CAS  PubMed  Google Scholar 

  8. Bunn, H. F. et al. Hemoglobin: Molecular, Genetic, and Clinical Aspects (Saunders, Philadelphia, 1986).

    Google Scholar 

  9. Goldberg, A. L. & Goff, S. A. in Maximizing Gene Expression Ch. 9 (eds Reznikoff, W. & Gold, L.) 287–314 (Butterworths, Stoneham, Massachusetts, 1986).

    Book  Google Scholar 

  10. Kostova, Z. & Wolf, D. H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO J. 22, 2309–2317 (2003).

    Article  CAS  Google Scholar 

  11. Goff, S. A., Voellmy, R. & Goldberg, A. L. in Ubiquitin Ch. 8 (ed. Rechsteiner, M.) 207–238 (Plenum, New York, 1988).

    Book  Google Scholar 

  12. Roche, E. & Sauer, R. T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 18, 4579–4589 (1999).

    Article  CAS  Google Scholar 

  13. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  14. Hartl, F. U. & Mayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  ADS  CAS  Google Scholar 

  15. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 44, 770–774 (2000).

    Article  ADS  Google Scholar 

  16. Gronostajski, R., Pardee, A. B. & Goldberg, A. L. The ATP-dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J. Biol. Chem. 260, 3344–3349 (1985).

    CAS  PubMed  Google Scholar 

  17. Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).

    Article  CAS  Google Scholar 

  18. Grune, T., Reinheckel, T., Davies, K. J. Degradation of oxidized proteins in mammalian cells. FASEB J. 11, 536–534 (1997).

    Article  Google Scholar 

  19. Tarcsa, E., Szymanska, G., Lecker, S., O'Connor, C. M. & Goldberg, A. L. Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26S proteasomes without ubiquitylation. J. Biol. Chem. 275, 20295–20301 (2000).

    Article  CAS  Google Scholar 

  20. Prouty, W. F. & Goldberg, A. L. Fate of abnormal proteins in E. coli: accumulation in intracellular granules before catabolism. Nature New Biol. 240, 147–150 (1972).

    Article  CAS  Google Scholar 

  21. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  Google Scholar 

  22. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 1998. 143, 1883–1898.

  23. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  Google Scholar 

  24. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA 77, 1365–1368 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Hough, R., Pratt, G. & Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262, 8303–8313 (1987).

    CAS  Google Scholar 

  26. Waxman, L., Fagan, J. M. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 262, 2451–2457 (1987).

    CAS  Google Scholar 

  27. Voges, D., Zwickl, P., Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (2000).

    Article  Google Scholar 

  28. Ananthan, J., Goldberg, A. L. & Voellmy, R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat-shock genes. Science 232, 522–524 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).

    Article  CAS  Google Scholar 

  30. Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138. (2001).

    Article  CAS  Google Scholar 

  31. Wickner, S., Maurizi, M. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  Google Scholar 

  32. Huang, H.C., Sherman, M. Y., Kandror, O. & Goldberg, A. L. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in E. coli. J. Biol. Chem. 276, 3920–3928 (2001).

    Article  CAS  Google Scholar 

  33. Goldberg, A. L. The mechanisms and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 9–23 (1992).

    Article  CAS  Google Scholar 

  34. Chung, C. H. Proteases in Escherichia coli. Science 262, 372–374 (1993).

    Article  ADS  CAS  Google Scholar 

  35. Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178–201 (1992).

    Article  CAS  Google Scholar 

  36. Langer, T., Kaser, M., Klanner, C., Leonhard, K. AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans. 29, 431–436 (2001).

    Article  CAS  Google Scholar 

  37. Suzuki, C. K., Rep, M., van Dijl, J. M., Suda, K., Grivell, L. A., Schatz, G. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22, 118–123 (1997).

    Article  CAS  Google Scholar 

  38. Kandror, O., Sherman, M. Y. & Goldberg, A. L. Rapid degradation of an abnormal protein in E. coli proceeds through repeated cycles of association with GroEL. J. Biol. Chem. 274, 37743–37749 (1999).

    Article  CAS  Google Scholar 

  39. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062–1067 (2000).

    Article  CAS  Google Scholar 

  40. Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78 (2003).

    Article  CAS  Google Scholar 

  41. Lee, D. H. & Goldberg, A. L. Proteasome inhibitors cause rapid induction of heat-shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 30–38 (1998).

    Article  CAS  Google Scholar 

  42. Kisselev, A. F. & Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chemy Biol. 8, 739–758 (2001).

    Article  CAS  Google Scholar 

  43. Meiners, S. et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem. 278, 21517–21525 (2003).

    Article  CAS  Google Scholar 

  44. Meriin, A. B. et al. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol. Cell. Biol. 19, 2547–2555 (1999).

    Article  CAS  Google Scholar 

  45. Hideshima, T. et al. The proteasome inhibitor pS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61, 3071–3076 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, A. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003). https://doi.org/10.1038/nature02263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02263

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing