Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dating the rise of atmospheric oxygen

Abstract

Several lines of geological and geochemical evidence indicate that the level of atmospheric oxygen was extremely low before 2.45 billion years (Gyr) ago, and that it had reached considerable levels by 2.22 Gyr ago. Here we present evidence that the rise of atmospheric oxygen had occurred by 2.32 Gyr ago. We found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa. The range of the isotopic composition of sulphur in this pyrite is large and shows no evidence of mass-independent fractionation, indicating that atmospheric oxygen was present at significant levels (that is, greater than 10-5 times that of the present atmospheric level) during the deposition of these units. The presence of rounded pebbles of sideritic iron formation at the base of the Rooihoogte Formation and an extensive and thick ironstone layer consisting of haematitic pisolites and oölites in the upper Timeball Hill Formation indicate that atmospheric oxygen rose significantly, perhaps for the first time, during the deposition of the Rooihoogte and Timeball Hill formations. These units were deposited between what are probably the second and third of the three Palaeoproterozoic glacial events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of Early Palaeoproterozoic sedimentary successions of South Africa.
Figure 2: Correlation chart for the Transvaal Supergroup in the Griqualand West and Transvaal structural basins, South Africa (modified from ref. 39).
Figure 3
Figure 4: Plot of δ33S* versus δ34S* values in pyrite of the Rooihoogte and Timeball Hill formations.

Similar content being viewed by others

References

  1. MacGregor, A. M. The problem of the Precambrian atmosphere. S. Afr. J. Sci. 23, 155–172 (1927)

    Google Scholar 

  2. Rasmussen, B. & Buick, R. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115–118 (1999)

    Article  ADS  CAS  Google Scholar 

  3. England, G. L., Rasmussen, B., Krapez, B. & Groves, D. I. Paleoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology 49, 1133–1156 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Beukes, N. J. & Klein, C. Geochemistry and sedimentology of a facies transition—from microbanded to granular iron-formation—in the early Proterozoic Transvaal Supergroup, South Africa. Precambr. Res. 47, 99–139 (1990)

    Article  ADS  Google Scholar 

  5. Yang, W. & Holland, H. D. The redox-sensitive trace elements, Mo, U, and Re in Precambrian carbonaceous shales: Indicators of the Great Oxidation Event. Geol. Soc. Am. Abstr. Programs 34, 381 (2002)

    Google Scholar 

  6. Holland, H. D. in Early Life on Earth (ed. Bengston, S.) 237–244 (Columbia Univ. Press, New York, 1994)

    Google Scholar 

  7. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean Ocean. Science 298, 2372–2374 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Chandler, F. W. Proterozoic redbed sequences of Canada. Can. Geol. Surv. Bull. 311 (1980)

  9. Chandler, F. W. Diagenesis of sabkha-related, sulphate nodules in the Early Proterozoic Gordon Lake Formation, Ontario, Canada. Carbon. Evapor. 3, 75–94 (1988)

    Article  Google Scholar 

  10. El Tabakh, M., Grey, K., Pirajno, F. & Schreiber, B. C. Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerriba basin, Western Australia: Origin and significance. Geology 27, 871–874 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Beukes, N. J. & Klein, C. in Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 147–151 (Cambridge Univ. Press, Cambridge, UK, 1992)

    Google Scholar 

  12. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: A critical review. Am. J. Sci. 298, 621–672 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Strauss, H. in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems (eds Altermann, W. & Corcoran, P. L.) 67–105 (Blackwell Science, Oxford, 2002)

    Book  Google Scholar 

  14. Dimroth, E. & Kimberley, M. M. Precambrian atmospheric oxygen: Evidence in the sedimentary distribution of carbon, sulfur, uranium, and iron. Can. J. Earth Sci. 13, 1161–1185 (1976)

    Article  ADS  CAS  Google Scholar 

  15. Clemmey, H. & Badham, N. Oxygen in the Precambrian atmosphere: An evaluation of the geological evidence. Geology 10, 141–146 (1982)

    Article  ADS  CAS  Google Scholar 

  16. Phillips, G. N., Myers, R. E. & Palmer, J. A. Problems with the placer model for Witwatersrand gold. Geology 15, 1027–1030 (1987)

    Article  ADS  CAS  Google Scholar 

  17. Ohmoto, H. Evidence in pre-2.2 Ga paleosols for the early evolution of the atmospheric oxygen and terrestrial biota. Geology 24, 1135–1138 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett 213, 15–30 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J. Geophys. Res. 106, 1–11 (2001)

    Article  Google Scholar 

  22. Romero, A. B. & Thiemens, M. Mass-independent sulfur isotopic compositions in sulfate aerosols and surface sulfates derived from atmospheric deposition: Possible sources of the MI anomaly and implications for atmospheric chemistry. Eos 83(Fall Meet. Suppl.), B71A–0731 (2002)

    Google Scholar 

  23. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Martini, J. E. J. The fluorite deposits in the Dolomite Series of the Marico District, Transvaal, South Africa. Econ. Geol. 71, 625–635 (1976)

    Article  Google Scholar 

  25. Bau, M., Beukes, N. J. & Romer, R. L. Increase of oxygen in the Earth's atmosphere and hydrosphere between 2.5 and 2.4 Ga B.P. Mineral. Mag. A 62, 127–128 (1998)

    Article  ADS  Google Scholar 

  26. Cameron, E. M. Sulphate and sulphate reduction in early Precambrian oceans. Nature 296, 145–148 (1982)

    Article  ADS  CAS  Google Scholar 

  27. Eriksson, K. A. The Timeball Hill Formation—A fossil delta. J. Sedim. Res. 43, 1046–1053 (1973)

    Article  Google Scholar 

  28. Coetzee, L. L. . Genetic Stratigraphy of the Paleoproterozoic Pretoria Group in the Western Transvaal Thesis, Rand Afrikaans Univ. (2001)

    Google Scholar 

  29. Eriksson, P. G. & Recsko, B. F. F. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sedim. Geol. 120, 319–335 (1998)

    Article  ADS  Google Scholar 

  30. Visser, J. N. J. The Timeball Hill Formation at Pretoria—A prograding shore-line deposit. Ann. Geol. Surv. (S. Afr.) 9, 115–118 (1971) (1971–72)

    Google Scholar 

  31. Visser, J. N. J. in Earth's Pre-Pleistocene Glacial Record (eds Hambrey, M. J. & Harland, W. B.) 180–184 (Cambridge Univ. Press, New York, 1981)

    Google Scholar 

  32. Schieber, J. Microbial mats in terrigenous clastics: The challenge of identification in the rock record. Palaios 14, 3–12 (1999)

    Article  ADS  Google Scholar 

  33. Hu, G., Rumble, D. & Wang, P.-L. An ultraviolet laser microprobe for in situ analysis of multi-sulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim. Cosmochim. Acta 67, 3101–3118 (2003)

    Article  ADS  CAS  Google Scholar 

  34. Miller, M. F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: An appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002)

    Article  ADS  CAS  Google Scholar 

  35. Farquhar, J. et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: Implications for biological signatures in the sulphur isotope record. Geobiology 1, 27–36 (2003)

    Article  CAS  Google Scholar 

  36. Beukes, N. J., Dorland, H. C. & Gutzmer, J. Pisolitic ironstone and ferricrete in the 2.22–2.4 Ga Timeball Hill Formation, Transvaal Supergroup: Implications for the history of atmospheric oxygen. Geol. Soc. Am. Abstr. Programs 34, 283 (2002)

    Google Scholar 

  37. Schweigart, H. Genesis of the iron ores of the Pretoria Series, South Africa. Econ. Geol. 60, 269–298 (1965)

    Article  CAS  Google Scholar 

  38. Hannah, J. L., Stein, H. J., Bekker, A., Markey, R. J. & Holland, H. D. Chondritic initial 187Os/188Os in Paleoproterozoic shale (seawater) and the onset of oxidative weathering. Geochim. Cosmochim. Acta 67 (2003) A-34

  39. Bekker, A. et al. Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for coupled climate change and carbon cycling. Am. J. Sci. 301, 261–285 (2001)

    Article  ADS  CAS  Google Scholar 

  40. Mojzsis, S. J., Coath, C. D., Greenwood, J. P., McKeegan, K. D. & Harrison, T. M. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim. Cosmochim. Acta 67, 1635–1658 (2003)

    Article  ADS  CAS  Google Scholar 

  41. Wing, B. A. et al. Δ33S, δ34S and δ13C constraints on the Paleoproterozoic atmosphere during the earliest Huronian glaciation. Geochim. Cosmochim. Acta 66, A840 (2002)

    Google Scholar 

  42. Roscoe, S. M. in Geology of Canadian Mineral Deposit Types (eds Eckstrand, O. R., Sinclair, W. D. & Thorpe, R. I.) P-1 10–23 (Geological Society of America, Denver, 1996)

    Google Scholar 

  43. Bekker, A. et al. Response of the exosphere to the 2.48–2.45 Ga superplume event. Geol. Soc. Am. Abstr. Programs 32 (2000) A-135

  44. Pickard, A. L. SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: Evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambr. Res. 125, 275–315 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lange for help with the SEM work; W. Yang for help with sample preparation; and J. Brouwer for giving us access to drill core EBA-2, which was drilled by Gold Fields Ltd in the Potchefstroom area, and is now stored by the Geological Survey of South Africa. This study was supported by the NASA-Ames Research Center, NASA, PRF/ACS, NSF and South African Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bekker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekker, A., Holland, H., Wang, PL. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004). https://doi.org/10.1038/nature02260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02260

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing