Identification of the gene for vitamin K epoxide reductase

Abstract

Vitamin K epoxide reductase (VKOR) is the target of warfarin, the most widely prescribed anticoagulant for thromboembolic disorders. Although estimated to prevent twenty strokes per induced bleeding episode1, warfarin is under-used because of the difficulty of controlling dosage and the fear of inducing bleeding. Although identified in 1974 (ref. 2), the enzyme has yet to be purified or its gene identified. A positional cloning approach has become possible after the mapping of warfarin resistance to rat chromosome 1 (ref. 3) and of vitamin K-dependent protein deficiencies to the syntenic region of human chromosome 16 (ref. 4). Localization of VKOR to 190 genes within human chromosome 16p12-q21 narrowed the search to 13 genes encoding candidate transmembrane proteins, and we used short interfering RNA (siRNA) pools against individual genes to test their ability to inhibit VKOR activity in human cells. Here, we report the identification of the gene for VKOR based on specific inhibition of VKOR activity by a single siRNA pool. We confirmed that MGC11276 messenger RNA encodes VKOR through its expression in insect cells and sensitivity to warfarin. The expressed enzyme is 163 amino acids long, with at least one transmembrane domain. Identification of the VKOR gene extends our understanding of blood clotting, and should facilitate development of new anticoagulant drugs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: siRNA inhibition of VKOR activity in A549 cells.
Figure 2: Time course of the inhibition of VKOR activity by the siRNA pool specific for gi:13124769 in A549 cells.
Figure 3: Expression of VKOR in Sf9 cells.
Figure 4: Inhibition of VKOR by warfarin.

References

  1. 1

    Horton, J. & Bushwick, B. Warfarin therapy: Evolving strategies in anticoagulation. Am. Family Physician 59, 635–647 (1999)

    CAS  Google Scholar 

  2. 2

    Zimmerman, A. & Matschiner, J. T. Biochemical basis of hereditary resistance to warfarin in the rat. Biochem. Pharmacol. 23, 1033–1040 (1974)

    Article  Google Scholar 

  3. 3

    Kohn, M. H. & Pelz, H. J. A gene-anchored map position of the rat warfarin-resistance locus, Rw, and its orthologs in mice and humans. Blood 96, 1996–1998 (2000)

    CAS  PubMed  Google Scholar 

  4. 4

    Fregin, A. et al. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 100, 3229–3232 (2002)

    CAS  Article  Google Scholar 

  5. 5

    Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Manfioletti, G., Brancolini, C., Avanzi, G. & Schneider, C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol. Cell. Biol. 13, 4976–4985 (1993)

    CAS  Article  Google Scholar 

  7. 7

    Kulman, J. D., Harris, J. E., Haldeman, B. A. & Davie, E. W. Primary structure and tissue distribution of two novel proline-rich γ-carboxyglutamic acid proteins. Proc. Natl Acad. Sci. USA 94, 9058–9062 (1997)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kulman, J. D., Harris, J. E., Xie, L. & Davie, E. W. Identification of two novel transmembrane γ-carboxyglutamic acid proteins expressed broadly in fetal and adult tissues. Proc. Natl Acad. Sci. USA 98, 1370–1375 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Stevenson, R. E., Burton, O. M., Ferlauto, G. J. & Taylor, H. A. Hazards of oral anticoagulants during pregnancy. J. Am. Med. Assoc. 243, 1549–1551 (1980)

    CAS  Article  Google Scholar 

  10. 10

    Barr, M. Jr & Burdi, A. R. Warfarin-associated embryopathy in a 17-week-old abortus. Teratology 14, 129–134 (1976)

    Article  Google Scholar 

  11. 11

    Howe, A. M. & Webster, W. S. The warfarin embryopathy: a rat model showing maxillonasal hypoplasia and other skeletal disturbances. Teratology 46, 379–390 (1992)

    CAS  Article  Google Scholar 

  12. 12

    Wu, S. M., Cheung, W. F., Frazier, D. & Stafford, D. W. Cloning and expression of the cDNA for human γ-glutamyl carboxylase. Science 254, 1634–1636 (1991)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Presnell, S. R. & Stafford, D. W. The vitamin K-dependent carboxylase. Thromb. Haemost. 87, 937–946 (2002)

    CAS  Article  Google Scholar 

  14. 14

    Tsaioun, K. I. Vitamin K-dependent proteins in the developing and aging nervous system. Nutr. Rev. 57, 231–240 (1999)

    CAS  Article  Google Scholar 

  15. 15

    Carlisle, T. L. & Suttie, J. W. Vitamin K dependent carboxylase: subcellular location of the carboxylase and enzymes involved in vitamin K metabolism in rat liver. Biochemistry 19, 1161–1167 (1980)

    CAS  Article  Google Scholar 

  16. 16

    Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002)

    CAS  Article  Google Scholar 

  17. 17

    Krichevsky, A. M. & Kosik, K. S. RNAi functions in cultured mammalian neurons. Proc. Natl Acad. Sci. USA 99, 11926–11929 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T. & El-Deiry, W. S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (Taxol)-exposed cells. Mol. Cell. Biol. 23, 5556–5571 (2003)

    CAS  Article  Google Scholar 

  19. 19

    Holen, T., Amarzguioui, M., Babaie, E. & Prydz, H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res. 31, 2401–2407 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Khvorova, A., Reynolds, A. & Jayasena, S. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 1–20 (2003)

    Article  Google Scholar 

  21. 21

    Zhang, W., Lane, R. D. & Mellgren, R. L. The major calpain isozymes are long-lived proteins. Design of an antisense strategy for calpain depletion in cultured cells. J. Biol. Chem. 271, 18825–18830 (1996)

    CAS  Article  Google Scholar 

  22. 22

    Bohley, P. Surface hydrophobicity and intracellular degradation of proteins. Biol. Chem. 377, 425–435 (1996)

    CAS  PubMed  Google Scholar 

  23. 23

    Dice, J. F. & Goldberg, A. L. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl Acad. Sci. USA 72, 3893–3897 (1975)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Thijssen, H. H., Janssen, Y. P. & Vervoort, L. T. Microsomal lipoamide reductase provides vitamin K epoxide reductase with reducing equivalents. Biochem. J. 297, 277–280 (1994)

    CAS  Article  Google Scholar 

  25. 25

    Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Scaringe, S. A. Advanced 5′-silyl-2’-orthoester approach to RNA oligonucleotide synthesis. Methods Enzymol. 317, 3–18 (2000)

    CAS  Article  Google Scholar 

  27. 27

    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001)

    CAS  Google Scholar 

  29. 29

    Lin, P. J. et al. The putative vitamin K-dependent γ-glutamyl carboxylase internal propeptide appears to be the propeptide binding site. J. Biol. Chem. 277, 28584–28591 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Li, T., Yang, C. T., Jin, D. & Stafford, D. W. Identification of a Drosophila vitamin K-dependent γ-glutamyl carboxylase. J. Biol. Chem. 275, 18291–18296 (2000)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Vision for help with bioinformatics, R. Wallin for technical assistance with the VKOR assay, and S. Makarov for assistance with quantitative PCR. For editorial assistance we thank L. Gabiger. This work was supported by grants from the NIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Darrel W. Stafford.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, T., Chang, C., Jin, D. et al. Identification of the gene for vitamin K epoxide reductase. Nature 427, 541–544 (2004). https://doi.org/10.1038/nature02254

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.