Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Bloom's syndrome helicase suppresses crossing over during homologous recombination

Abstract

Mutations in BLM, which encodes a RecQ helicase, give rise to Bloom's syndrome, a disorder associated with cancer predisposition and genomic instability1. A defining feature of Bloom's syndrome is an elevated frequency of sister chromatid exchanges2. These arise from crossing over of chromatid arms during homologous recombination, a ubiquitous process that exists to repair DNA double-stranded breaks and damaged replication forks. Whereas crossing over is required in meiosis, in mitotic cells it can be associated with detrimental loss of heterozygosity. BLM forms an evolutionarily conserved complex with human topoisomerase IIIα (hTOPO IIIα)3,4, which can break and rejoin DNA to alter its topology. Inactivation of homologues of either protein leads to hyper-recombination in unicellular organisms5. Here, we show that BLM and hTOPO IIIα together effect the resolution of a recombination intermediate containing a double Holliday junction. The mechanism, which we term double-junction dissolution, is distinct from classical Holliday junction resolution and prevents exchange of flanking sequences. Loss of such an activity explains many of the cellular phenotypes of Bloom's syndrome. These results have wider implications for our understanding of the process of homologous recombination and the mechanisms that exist to prevent tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a substrate containing a double HJ.
Figure 2: BLM and hTOPO IIIα can convert DHJ into circular products.
Figure 3: The generation of circular products is specific for the combination of BLM and hTOPO IIIα.
Figure 4: Analysis of the reaction mechanism for the generation of circular products.

Similar content being viewed by others

References

  1. Ellis, N. A. et al. The Bloom's Syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Chaganti, R. S., Schonberg, S. & German, J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc. Natl Acad. Sci. USA 71, 4508–4512 (1974)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, L. et al. The Bloom's syndrome gene product interacts with topoisomerase III. J. Biol. Chem. 275, 9636–9644 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, F. B. et al. Association of the Bloom syndrome protein with topoisomerase IIIα in somatic and meiotic cells. Cancer Res. 60, 1162–1167 (2000)

    CAS  PubMed  Google Scholar 

  5. Wu, L. & Hickson, I. D. RecQ helicases and topoisomerases: components of a conserved complex for the regulation of genetic recombination. Cell. Mol. Life Sci. 58, 894–901 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Harmon, F. G., DiGate, R. J. & Kowalczykowski, S. C. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol. Cell 3, 611–620 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase stimulates the activity of human topoisomerase III α. Nucleic Acids Res. 30, 4823–4829 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karow, J. K., Constantinou, A., Li, J. L., West, S. C. & Hickson, I. D. The Bloom's syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl Acad. Sci. USA 97, 6504–6508 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gangloff, S., de Massy, B., Arthur, L., Rothstein, R. & Fabre, F. The essential role of yeast topoisomerase III in meiosis depends on recombination. EMBO J. 18, 1701–1711 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benson, F. E. & West, S. C. Substrate specificity of the Escherichia coli RuvC protein. Resolution of three- and four-stranded recombination intermediates. J. Biol. Chem. 269, 5195–5201 (1994)

    CAS  PubMed  Google Scholar 

  11. Lloyd, R. G. & Sharples, G. J. Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Res. 21, 1719–1725 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu, T. J., Tse-Dinh, Y. C. & Seeman, N. C. Holliday junction crossover topology. J. Mol. Biol. 236, 91–105 (1994)

    Article  CAS  PubMed  Google Scholar 

  13. Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983)

    Article  CAS  PubMed  Google Scholar 

  15. Constantinou, A., Chen, X. B., McGowan, C. H. & West, S. C. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 21, 5577–5585 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Constantinou, A., Davies, A. A. & West, S. C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104, 259–268 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. West, S. C. Processing of recombination intermediates by the RuvABC proteins. Annu. Rev. Genet. 31, 213–244 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Goulaouic, H. et al. Purification and characterization of human DNA topoisomerase IIIα. Nucleic Acids Res. 27, 2443–2450 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karow, J. K., Chakraverty, R. K. & Hickson, I. D. The Bloom's syndrome gene product is a 3′-5′ DNA helicase. J. Biol. Chem. 272, 30611–30614 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, R. D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Osman, F., Dixon, J., Doe, C. L. & Whitby, M. C. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol. Cell 12, 761–774 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nasmyth, K. A. Molecular genetics of yeast mating type. Annu. Rev. Genet. 16, 439–500 (1982)

    Article  CAS  PubMed  Google Scholar 

  26. Bachrati, C. Z. & Hickson, I. D. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374, 577–606 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Goulaouic, J.-F. Riou and S. Matson for proteins, and members of the Genomic Integrity Group for useful discussions. We also thank J. Haber, S. C. West, E. Louis, P. McHugh and R. Borts for comments on the manuscript, and J. Haber for communicating results before publication. This work is supported by the Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Hickson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Hickson, I. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003). https://doi.org/10.1038/nature02253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02253

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing