Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting of iron at the physical conditions of the Earth's core

Abstract

Seismological data can yield physical properties of the Earth's core, such as its size and seismic anisotropy1,2,3. A well-constrained iron phase diagram, however, is essential to determine the temperatures at core boundaries and the crystal structure of the solid inner core. To date, the iron phase diagram at high pressure has been investigated experimentally through both laser-heated diamond-anvil cell and shock-compression techniques, as well as through theoretical calculations4,5,6,7,8,9,10,11,12,13,14,15,16,17. Despite these contributions, a consensus on the melt line or the high-pressure, high-temperature phase of iron is lacking. Here we report new and re-analysed sound velocity measurements of shock-compressed iron at Earth-core conditions15. We show that melting starts at 225 ± 3 GPa (5,100 ± 500 K) and is complete at 260 ± 3 GPa (6,100 ± 500 K), both on the Hugoniot curve—the locus of shock-compressed states. This new melting pressure is lower than previously reported16, and we find no evidence for a previously reported solid–solid phase transition on the Hugoniot curve near 200 GPa (ref. 16).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron phase diagram.
Figure 2: Sound velocity and overtake ratio.

Similar content being viewed by others

References

  1. Lehmann, I. P′. Publ. Bur. Cent. Seismol. Int. A 14, 87–115 (1936)

    Google Scholar 

  2. Song, X. & Richards, P. G. Seismological evidence for differential rotation of the Earth's inner core. Nature 382, 221–224 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Su, W., Dziewonski, A. M. & Jeanloz, R. Planet within a planet: rotation of the inner core of Earth. Science 274, 1883–1887 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Williams, Q., Jeanloz, R., Bass, J., Svendsen, B. & Ahrens, T. J. The melting curve of iron to 250 gigapascals: a constraint on the temperature at Earth's center. Science 236, 181–182 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Boehler, R. Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature 363, 534–536 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Shen, G., Mao, H. K., Hemley, R. J., Duffy, T. S. & Rivers, M. L. Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373–376 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Saxena, S. K. & Dubrovinsky, L. S. Iron phases at high pressures and temperatures: phase transition and melting. Am. Mineral. 85, 372–375 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Andrault, D., Fiquet, G., Charpin, T. & Le Bihan, T. Structure analysis and stability field of β-iron at high pressure and temperature. Am. Mineral. 85, 364–371 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Yoo, C. S., Akella, J., Campbell, A. J., Mao, H. K. & Hemley, R. J. Phase diagram of iron by in situ x-ray diffraction: implications for Earth's core. Science 270, 1473–1475 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Alfè, D., Price, G. D. & Gillan, M. J. Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations. Phys. Rev. B 65, 165118 (2002)

    Article  ADS  Google Scholar 

  11. Laio, A., Bernard, S., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Physics of iron at Earth's core conditions. Science 287, 1027–1030 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ahrens, T. J., Bass, J. D. & Abelson, J. R. in Shock Compression of Condensed Matter—1989 (eds Schmidt, S. C., Johnson, L. W. & Davison, L. W.) (Elsevier Science, Amsterdam, 1990)

    Google Scholar 

  13. Yoo, C. S., Holmes, N. C., Ross, M., Webb, D. J. & Pike, C. Shock temperatures and melting of iron at Earth core conditions. Phys. Rev. Lett. 70, 3931–3934 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Benuzzi-Mounaix, A. et al. Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasma 9, 2466–2469 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Nguyen, J. H. & Holmes, N. C. in Shock Compression of Condensed Matter—1999 (eds Furnish, M. D., Chhabildas, L. C. & Hixson, R. S.) 81–84 (American Institute of Physics, New York, 1999)

    Google Scholar 

  16. Brown, J. M. & McQueen, R. G. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91, 7485–7494 (1986)

    Article  ADS  Google Scholar 

  17. Ahrens, T. J., Holland, K. G. & Chen, C. Q. Phase diagram of iron, revised-core temperatures. Geophys. Res. Lett. 29, 54-1–54-4 (2002)

    Article  Google Scholar 

  18. Hixson, R. S., Boness, D. A., Shane, J. W. & Moriarty, J. A. Acoustic velocities and phase transitions in molybdenum under strong shock compression. Phys. Rev. Lett. 62, 637–640 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Brown, J. M. & Shaner, J. W. in Shock Compression of Condensed Matter—1983 (eds Asay, J. R., Graham, R. A. & Straub, G. K.) 91–94 (North-Holland, Amsterdam, 1984)

    Google Scholar 

  20. McQueen, R. G., Fritz, J. N. & Morris, C. E. in Shock Compression of Condensed Matter—1983 (eds Asay, J. R., Graham, R. A. & Straub, G. K.) 95–98 (North-Holland, Amsterdam, 1984)

    Google Scholar 

  21. Shaner, J. W., Brown, J. M. & McQueen, R. G. Melting of metals above 100 GPa. Mater. Res. Soc. Symp. Proc. 22, 137–141 (1984)

    CAS  Google Scholar 

  22. Zel'dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967)

    Google Scholar 

  23. McQueen, R. G., Hopson, J. W. & Fritz, J. N. Optical technique for determining rarefaction wave velocities at very high pressures. Rev. Sci. Instrum. 53, 245–250 (1982)

    Article  ADS  Google Scholar 

  24. Brown, J. M., Fritz, J. N. & Hixson, R. S. Hugoniot data for iron. J. Appl. Phys. 88, 5496–5498 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Wasserman, E., Stixrude, L. & Cohen, R. E. Thermal properties of iron at high pressures and temperatures. Phys. Rev. B 53, 8296–8309 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Lou, S. N. & Ahrens, T. J. Superheating systematics of crystalline solids. Appl. Phys. Lett. 82, 1836–1838 (2003)

    Article  ADS  Google Scholar 

  27. Lou, S. N. & Ahrens, T. J. Application of shock-induced superheating to the melting of geophysically important minerals. Phys. Earth Planet. Inter. (in the press)

  28. Boehler, R. & Ross, M. Melting curve of aluminum in a diamond cell to 0.8 Mbar: implications for iron. Earth Planet. Sci. Lett. 153, 223–227 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Wallace, D. C. Irreversible thermodynamics of flow in solids. Phys. Rev. B 22, 1477–1486 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  30. Boehler, R. Melting of the Fe-FeO and Fe-FeS systems at high-pressure—constraints on core temperatures. Earth Planet. Sci. Lett. 111, 217–227 (1992)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We benefited from discussions with J. M. Brown, O. L. Anderson, M. Ross and R. Boehler. We acknowledge F. H. Streitz for the formulation of equations (2) and (3). We are grateful for the technical efforts of S. Caldwell, E. Ojala, L. Raper, K. Stickle. Work was performed by the University of California under the auspices of the US DOE by the Lawrence Livermore National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Nguyen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, J., Holmes, N. Melting of iron at the physical conditions of the Earth's core. Nature 427, 339–342 (2004). https://doi.org/10.1038/nature02248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02248

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing