Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mitochondrial calcium uniporter is a highly selective ion channel


During intracellular Ca2+ signalling mitochondria accumulate significant amounts of Ca2+ from the cytosol1,2. Mitochondrial Ca2+ uptake controls the rate of energy production1,3,4, shapes the amplitude and spatio-temporal patterns of intracellular Ca2+ signals1,5,6,7,8, and is instrumental to cell death9,10. This Ca2+ uptake is undertaken by the mitochondrial Ca2+ uniporter (MCU) located in the organelle's inner membrane11,12. The uniporter passes Ca2+ down the electrochemical gradient maintained across this membrane without direct coupling to ATP hydrolysis or transport of other ions11. Carriers are characterized by turnover numbers that are typically 1,000-fold lower than ion channels, and until now it has been unclear whether the MCU is a carrier or a channel13. By patch-clamping the inner mitochondrial membrane, we identified a previously unknown Ca2+-selective ion channel sensitive to inhibitors of mitochondrial Ca2+ uptake. Our data indicate that this unique channel binds Ca2+ with extremely high affinity (dissociation constant ≤2 nM), enabling high Ca2+ selectivity despite relatively low cytoplasmic Ca2+ concentrations. The channel is inwardly rectifying, making it especially effective for Ca2+ uptake into energized mitochondria. Thus, we conclude that the properties of the current mediated by this novel channel are those of the MCU.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ current through the inner mitochondrial membrane.
Figure 2: RuR and Ru360 sensitivity.
Figure 3: IMiCa selectivity.
Figure 4: Single iMiCa Ca2+ channels from inner mitochondrial membrane inside-out patches (105 mM CaCl2 solution at the cytoplasmic surface (pipette)).

Similar content being viewed by others


  1. Rizzuto, R., Bernardi, P. & Pozzan, T. Mitochondria as all-round players of the calcium game. J. Physiol. (Lond.) 529, 37–47 (2000)

    Article  CAS  Google Scholar 

  2. Montero, M. et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nature Cell Biol. 2, 57–61 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990)

    Article  CAS  PubMed  Google Scholar 

  4. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P. & Lechleiter, J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Budd, S. L. & Nicholls, D. G. A re-evaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J. Neurochem. 66, 403–411 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B. & Hille, B. Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boitier, E., Rea, R. & Duchen, M. R. Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J. Cell Biol. 145, 795–808 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Demaurex, N. & Distelhorst, C. Cell biology. Apoptosis—the calcium connection. Science 300, 65–67 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Gunter, K. K. & Gunter, T. E. Transport of calcium by mitochondria. J. Bioenerg. Biomembr. 26, 471–485 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Bernardi, P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Gunter, T. E. & Pfeiffer, D. R. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755–C786 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. DeLuca, H. F. & Engstrom, G. W. Calcium uptake by rat kidney mitochondria. Proc. Natl Acad. Sci. USA 47, 1744–1750 (1961)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Tashmukhamedov, B. A., Gagelgans, A. I., Mamatkulov, K. & Makhmudova, E. M. Inhibition of Ca2+ transport in mitochondria by selective blockade of membrane mucopolysaccharides by hexamine cobalt chloride. FEBS Lett. 28, 239–242 (1972)

    Article  CAS  PubMed  Google Scholar 

  18. Ying, W. L., Emerson, J., Clarke, M. J. & Sanadi, D. R. Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclear ruthenium amine complex. Biochemistry 30, 4949–4952 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. Matlib, M. A. et al. Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J. Biol. Chem. 273, 10223–10231 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Drahota, Z., Gazzotti, P., Carafoli, E. & Rossi, C. S. A comparison of the effects of different divalent cations on a number of mitochondrial reactions linked to ion translocation. Arch. Biochem. Biophys. 130, 267–273 (1969)

    Article  CAS  PubMed  Google Scholar 

  21. Vainio, H., Mela, L. & Chance, B. Energy dependent bivalent cation translocation in rat liver mitochondria. Eur. J. Biochem. 12, 387–391 (1970)

    Article  CAS  PubMed  Google Scholar 

  22. Selwyn, M. J., Dawson, A. P. & Dunnett, S. J. Calcium transport in mitochondria. FEBS Lett. 10, 1–5 (1970)

    Article  CAS  PubMed  Google Scholar 

  23. Kostyuk, P. G. & Krishtal, O. A. Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J. Physiol. (Lond.) 270, 569–580 (1977)

    Article  CAS  Google Scholar 

  24. Almers, W., McCleskey, E. W. & Palade, P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. (Lond.) 353, 565–583 (1984)

    Article  CAS  Google Scholar 

  25. McCleskey, E. W. & Almers, W. The Ca channel in skeletal muscle is a large pore. Proc. Natl Acad. Sci. USA 82, 7149–7153 (1985)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prakriya, M. & Lewis, R. S. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 33, 311–321 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Vinogradov, A. & Scarpa, A. The initial velocities of calcium uptake by rat liver mitochondria. J. Biol. Chem. 248, 5527–5531 (1973)

    CAS  PubMed  Google Scholar 

  28. Bragadin, M., Pozzan, T. & Azzone, G. F. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18, 5972–5978 (1979)

    Article  CAS  PubMed  Google Scholar 

  29. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001)

    Google Scholar 

  30. Cannon, B. & Lindberg, O. Mitochondria from brown adipose tissue: isolation and properties. Methods Enzymol. 55, 65–78 (1979)

    Article  CAS  PubMed  Google Scholar 

Download references


We would like to thank J. Borecky for advice on the whole-mitoplast configuration; L. DeFelice, H. Xu, B. Desai, V. Sandler and P. Smith for discussions; and S. Gapon and Y. Manasian for technical assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David E. Clapham.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirichok, Y., Krapivinsky, G. & Clapham, D. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing