Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional genomic hypothesis generation and experimentation by a robot scientist


The question of whether it is possible to automate the scientific process is of both great theoretical interest1,2 and increasing practical importance because, in many scientific areas, data are being generated much faster than they can be effectively analysed. We describe a physically implemented robotic system that applies techniques from artificial intelligence3,4,5,6,7,8 to carry out cycles of scientific experimentation. The system automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments using a laboratory robot, interprets the results to falsify hypotheses inconsistent with the data, and then repeats the cycle. Here we apply the system to the determination of gene function using deletion mutants of yeast (Saccharomyces cerevisiae) and auxotrophic growth experiments9. We built and tested a detailed logical model (involving genes, proteins and metabolites) of the aromatic amino acid synthesis pathway. In biological experiments that automatically reconstruct parts of this model, we show that an intelligent experiment selection strategy is competitive with human performance and significantly outperforms, with a cost decrease of 3-fold and 100-fold (respectively), both cheapest and random-experiment selection.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: A schematic representation of the logical model of the aromatic amino acid pathway in yeast.
Figure 3: Actual and simulated performance of the Robot Scientist.


  1. Popper, K. The Logic of Scientific Discovery (Hutchinson, London, 1972)

    MATH  Google Scholar 

  2. Sloman, A. The Computer Revolution in Philosophy (Harvester, Hassocks, Sussex, 1978); available online from 〈

    Google Scholar 

  3. Buchanan, B. G., Sutherland, G. L. & Feigenbaum, E. A. in Machine Intelligence Vol. 4 (eds Meltzer, B. & Michie, D.) 209–254 (Edinburgh Univ. Press, 1969)

    Google Scholar 

  4. Langley, P., Simon, H. A., Bradshaw, G. L. & Zytkow, J. M. Scientific Discovery: Computational Explorations of the Creative Process (MIT Press, Cambridge, Massachusetts, 1987)

    Google Scholar 

  5. Z̈ytkow, J. M., Zhu, J. & Hussam, A. Automated discovery in a chemistry laboratory. in Proceedings of the 8th National Conference on Artificial Intelligence (AAAI-1990) (eds Dietterich, T. & Swartout, W.) 889–894 (MIT, Cambridge, Massachusetts, 1990)

    Google Scholar 

  6. King, R. D., Muggleton, S. H., Srinivasan, A. & Sternberg, M. J. E. Structure–activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. Natl Acad. Sci. USA 93, 438–442 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valdes-Perez, R. E. Discovery tools for science applications. Commun. ACM 42, 37–41 (1999)

    Article  Google Scholar 

  8. Langley, P. The computational support of scientific discovery. Int. J. Hum.–Comput. Stud. 53, 393–410 (2000)

    Article  Google Scholar 

  9. Beadle, G. W. & Tatum, E. I. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pierce, C. S. Collected Papers of Charles Sanders Pierce (Harvard Univ. Press, 1958)

    Google Scholar 

  11. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002); 〈

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiser, P. G. K. et al. Developing a logical model of yeast metabolism. Electron. Trans. Artif. Intell. 5, 223–244 (2001)

    Google Scholar 

  13. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000); 〈

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitchell, T. M. Machine Learning (McGraw-Hill, New York, 1997)

    MATH  Google Scholar 

  15. Langley, P. Elements of Machine Learning (Morgan Kaufmann, San Mateo, California, 1996)

    Google Scholar 

  16. Cohen, D. A., Ghabhramani, Z. & Jordan, M. I. Active learning with statistical models. J. Artif. Intell. Res. 4, 129–145 (1996)

    Article  Google Scholar 

  17. Lin, F.-R. & Shaw, M. J. Active training of backpropagation neural networks using the learning by experimentation methodology. Ann. Oper. Res. 75, 129–145 (1997)

    Article  Google Scholar 

  18. Fedorov, V. V. Theory of Optimal Experiments (Academic, London, 1972)

    Google Scholar 

  19. Muggleton, S. & Page, D. in Machine Intelligence Vol. 15 (eds Furukawa, K., Michie, D. & Muggleton, S.) 248–267 (Oxford Univ. Press, 1999)

    Google Scholar 

  20. Bryant, C. H., Muggleton, S. H., Oliver, S. G., Kell, D. B., Reiser, P. G. K. & King, R. D. Combining inductive logic programming, active learning, and robotics to discover the function of genes. Electron. Trans. Artif. Intell. 5, 1–36 (2001)

    Google Scholar 

  21. Flach, P. & Kaka, A. Abduction and Induction (Kluwer, London, 2000)

    Book  Google Scholar 

  22. Zupan, B. et al. in Proceedings of the Eighth European Conference on Artificial Intelligence in Medicine (eds Qualini, S., Barahona, P. & Andreassen, S.) 304–313 (Springer, Berlin, 2001)

    Book  Google Scholar 

  23. Muggleton, S. Inverse entailment and Progol. New Generation Comput. J. 13, 245–286 (1995)

    Article  Google Scholar 

  24. Rabitz, H., de Vivie-Riedle, R., Motzkus, M. & Kompa, K. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Cochran, W. G. & Cox, G. M. Experimental Designs (Wiley, New York, 1992)

    MATH  Google Scholar 

  26. Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references


We thank D. Page, U. Sarkans, A. Tamaddoni, M. Sternberg, A. Sloman and D. Michie for their help and advice, and D. Struttman for technical assistance. The work was funded by the BBSRC, the EPSRC, the Wellcome Trust and PharmDM.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen G. Oliver.

Ethics declarations

Competing interests

R.D.K. is a co-founder and member of the scientific board of PharmaDM, Kapeldreef 60, B-3001 Heverlee, Belgium.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, R., Whelan, K., Jones, F. et al. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing