Abstract
Anthropogenic aerosols enhance cloud reflectivity by increasing the number concentration of cloud droplets, leading to a cooling effect on climate known as the indirect aerosol effect. Observational support for this effect is based mainly on evidence that aerosol number concentrations are connected with droplet concentrations, but it has been difficult to determine the impact of these indirect effects on radiative forcing1,2,3. Here we provide observational evidence for a substantial alteration of radiative fluxes due to the indirect aerosol effect. We examine the effect of aerosols on cloud optical properties using measurements of aerosol and cloud properties at two North American sites that span polluted and clean conditions—a continental site in Oklahoma with high aerosol concentrations, and an Arctic site in Alaska with low aerosol concentrations. We determine the cloud optical depth required to fit the observed shortwave downward surface radiation. We then use a cloud parcel model to simulate the cloud optical depth from observed aerosol properties due to the indirect aerosol effect. From the good agreement between the simulated indirect aerosol effect and observed surface radiation, we conclude that the indirect aerosol effect has a significant influence on radiative fluxes.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



References
- 1
Penner, J. E. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 289–348 (Cambridge Univ. Press, Cambridge, UK, 2001)
- 2
Rosenfeld, D. & Feingold, G. Explanation of discrepancies among satellite observations of the aerosol indirect effects. Geophys. Res. Lett. 30, doi:10.1029/2003GL017684 (2003)
- 3
Brenguier, J.-L., Pawlowska, H. & Schüller, L. J. Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res. 108, 8632; doi:10.1029/2002JD002682 (2003)
- 4
Sheridan, P. J., Delene, D. J. & Ogren, J. A. Four years of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res. 106, 20735–20747 (2001)
- 5
Dong, X., Ackerman, T. P., Clothiaux, E. E., Pilewskie, P. & Han, Y. Microphysical and radiative properties of stratiform clouds deduced from ground-based measurements. J. Geophys. Res. 102, 23829–23843 (1997)
- 6
Dong, X., Ackerman, T. P. & Clothiaux, E. E. Parameterizations of microphysical and shortwave radiative properties of boundary layer stratus from ground-based measurements. J. Geophys. Res. 102, 31681–31393 (1998)
- 7
Dong, X., Mace, G. G., Minnis, P. & Young, D. F. Arctic stratus cloud properties and their effect on the surface radiation budget: selected cases from FIRE ACE. J. Geophys. Res. 106, 15297–15312 (2001)
- 8
Dong, X. et al. Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM Cloud IOP. J. Atmos. Sci. 59, 3265–3284 (2002)
- 9
Dong, X. & Mace, G. G. Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Ocean. Tech. 20, 42–53 (2003)
- 10
Liljegren, J. C., Clothiaux, E. E., Mace, G. G., Kato, S. & Dong, X. A new retrieval for liquid water path using a ground based microwave radiometer and measurements of cloud temperature. J. Geophys. Res. 106, 14485–14500 (2001)
- 11
Dong, X. & Mace, G. G. Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow Alaska. J. Clim. 16, 445–461 (2003)
- 12
Liu, X. & Seidl, W. Modeling study of cloud droplet nucleation and in-cloud sulfate production during the Sanitation of the Atmosphere (SANA) 2 campaign. J. Geophys. Res. 103, 16145–16158 (1998)
- 13
Delene, D. J. & Deshler, T. Vertical profiles of cloud condensation nuclei above Wyoming. J. Geophys. Res. 106, 12579–12588 (2001)
- 14
Quinn, P. K. et al. A three-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res. D 107, doi:101029/2001JD001248 (2002)
- 15
Climate Modeling and Diagnostics Laboratory data archive 〈http://www.cmdl.noaa.gov/info/ftpdata.html〉 (2000).
- 16
Twomey, S. The nuclei of natural clouds formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl. 43, 243–249 (1959)
- 17
Rogers, E., Deaven, D. G. & DiMego, G. J. The regional analysis system for the operational “early” eta model: original 80-km configuration and recent changes. Weath. Forecast. 10, 810–825 (1995)
- 18
Lohmann, U., Feichter, J., Chuang, C. C. & Penner, J. E. Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res. 104, 9169–9198 (1999)
- 19
Brenguier, J.-L. et al. Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J. Atmos. Sci. 57, 803–821 (2000)
- 20
Liu, Y. & Daum, P. H. Indirect warming effect from dispersion forcing. Nature 419, 580–581 (2002)
- 21
Lin, B., Wielicki, B., Minnis, P. & Rossow, W. Estimation of water cloud properties from satellite microwave, infrared, and visible measurements in oceanic environments. 1, Microwave brightness temperature simulations. J. Geophys. Res. 103, 3873–3886 (1998)
- 22
Ghan, S. J., Easter, R. C., Hudson, J. & Breon, F.-M. Evaluation of aerosol indirect radiative forcing in MIRAGE. J. Geophys. Res. 106, 5317–5334 (2001)
- 23
Chuang, C. C. et al. Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations. J. Geophys. Res. D 107, doi:101029/2000JD000215 (2002)
Acknowledgements
We thank P. Quinn for providing the composition data at the ARM SGP and NSA sites. During this study, X.D. was also supported by the NASA CERES project. This work was supported by the DOE ARM programme.
Author information
Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Penner, J., Dong, X. & Chen, Y. Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature 427, 231–234 (2004). https://doi.org/10.1038/nature02234
Received:
Accepted:
Issue Date:
Further reading
-
Insights into the chemistry of aerosol growth in Beijing: Implication of fine particle episode formation during wintertime
Chemosphere (2021)
-
Reducing air pollution increases the local diurnal temperature range: A case study of Lanzhou, China
Meteorological Applications (2020)
-
Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues
Geoscientific Model Development (2020)
-
The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China
Atmospheric Chemistry and Physics (2020)
-
Long-term (2008–2017) analysis of atmospheric composite aerosol and black carbon radiative forcing over a semi-arid region in southern India: Model results and ground measurement
Atmospheric Environment (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.