Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core


Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets 187Os-enrichments in terms of a component of recycled oceanic crust within the source material1,2. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled 186Os–187Os anomalies, put time constraints on inner-core formation3,4,5. Like osmium, tungsten is a siderophile (‘iron-loving’) element that preferentially partitioned into the Earth's core during core formation but is also ‘incompatible’ during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted 186Os–187Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution6. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core–mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: εW values for Group I and Group II kimberlites and Hawaiian picrites.
Figure 2: εW–186Os/188Os mixing models for two core-contribution scenarios and for Mn-crust contamination of the Hawaiian plume source.


  1. Reisberg, L. et al. Os isotope systematics in ocean island basalts. Earth Planet. Sci. Lett. 120, 149–167 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Hauri, E. H. & Hart, S. R. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south-pacific ocean. Earth Planet. Sci. Lett. 114, 353–371 (1993)

    Article  ADS  CAS  Google Scholar 

  3. Brandon, A. D., Walker, R. J., Morgan, J. W., Norman, M. D. & Prichard, H. M. Coupled 186Os and 187Os evidence for core-mantle interaction. Science 280, 1570–1573 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Brandon, A. D., Norman, M. D., Walker, R. J. & Morgan, J. W. 186Os-187Os systematics of Hawaiian picrites. Earth Planet. Sci. Lett. 174, 24–42 (1999)

    Article  ADS  Google Scholar 

  5. Brandon, A. D. et al. 186Os-187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet. Sci. Lett. 206, 411–426 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Collerson, K. D., Schoenberg, R. & Kamber, B. S. Unradiogenic W in kimberlites: direct evidence for core-mantle interaction. Geochim. Cosmochim. Acta A 66, 148 (2002)

    Google Scholar 

  7. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)

    Article  ADS  CAS  Google Scholar 

  8. McKenzie, D. & O'Nions, R. K. Mantle reservoirs and ocean island basalts. Nature 301, 229–231 (1983)

    Article  ADS  CAS  Google Scholar 

  9. Shirey, S. B. & Walker, R. J. The Re-Os isotope system in cosmochemistry and high temperature geochemistry. Annu. Rev. Earth Planet. Sci. 26, 423–500 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Shaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. J. Evidence for recycled Archean oceanic mantle lithosphere in the Azores plume. Nature 420, 304–307 (2002)

    Article  ADS  Google Scholar 

  11. Walker, R. J., Morgan, J. W. & Horan, M. F. Osmium-187 enrichment in some plumes: evidence for core-mantle interaction? Science 269, 819–822 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Newsom, H. E. et al. The depletion of tungsten in the bulk silicate Earth: constrainst on core formation. Geochim. Cosmochim. Acta 60, 1155–1169 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Schoenberg, R., Kamber, B., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Norman, M. D. & Garcia, M. O. Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet. Sci. Lett. 168, 27–44 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Bennett, V. C., Esat, T. M. & Norman, M. D. Two mantle-plume components in Hawaiian picrites inferred from correlated Os-Pb isotopes. Nature 381, 221–224 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Bennett, V. C., Norman, M. D. & Garcia, M. O. Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume. Earth Planet. Sci. Lett. 183, 513–526 (2000)

    Article  ADS  CAS  Google Scholar 

  19. McDonough, W. F. in Earthquake Thermodynamics and Phase Transformations in the Earth's Interior Vol. 76 (eds Teissseyre, R. & Majewski, E.) 3–23 (Academic, San Diego, 2001)

    Book  Google Scholar 

  20. Yoder, C. F. in Global Earth Physics: a Handbook of Physical Constants (ed. Ahrens, T. J.) 1–31 (American Geophysical Union, Washington DC, 1995)

    Google Scholar 

  21. Liu, M. & Fleet, M. E. Partitioning of siderophile elements (W, Mo, As, Ag, Ge, Ga, and Sn) and Si in the Fe-S system and their fractionation in iron meteorites. Geochim. Cosmochim. Acta 65, 671–682 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Helffrich, G. R. & Wood, B. J. The Earth's mantle. Nature 412, 501–507 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust—a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    Article  ADS  Google Scholar 

  24. Horan, M. F., Smoliar, M. I. & Walker, R. J. 182W and 187Re-187Os systematics of iron meteorites: Chronology for melting, differentiation, and crystallization in asteroids. Geochim. Cosmochim. Acta 62, 545–554 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Smith, C. B. Pb, Sr and Nd isotopic evidence for sources of southern African cretaceous kimberlites. Nature 304, 51–54 (1983)

    Article  ADS  CAS  Google Scholar 

  26. Schulze, D. J. et al. Extreme crustal oxygen isotope isotope signature preserved in coesite in diamond. Nature 423, 68–70 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Burton, K. W. et al. Osmium isotope variations in the oceans recorded by Fe–Mn crusts. Earth Planet. Sci. Lett. 171, 185–197 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Walker, R. J. et al. Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochim. Cosmochim. Acta 61, 4799–4807 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Lassiter, J. C. & Hauri, E. H. Osmium-isotope variation in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–493 (1998)

    Article  ADS  CAS  Google Scholar 

Download references


We thank A. LeRoex, J. Gurney, K. Westerlund, N. Coe and M. Coetzee at the University of Cape Town who provided and helped us select kimberlite samples. S. Russel at the Natural History Museum, London, donated the meteorite samples. Discussions on the manuscript by E. Hauri, G. Helffrich & B. Wood are appreciated. This work is supported by a EU Marie Curie post-doctoral fellowship.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anders Scherstén.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scherstén, A., Elliott, T., Hawkesworth, C. et al. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core. Nature 427, 234–237 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing