Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo


Formation and patterning of the vertebrate embryo occur in a head-to-tail sequence. This progressive mode of body formation from the posterior end of the embryo requires a strict temporal coordination of tissue differentiation—a process involving fibroblast growth factor (FGF) signalling. Here we show that transcription of fgf8 messenger RNA is restricted to the growing posterior tip of the embryo. fgf8 mRNA is progressively degraded in the newly formed tissues, resulting in the formation of an mRNA gradient in the posterior part of the embryo. This fgf8 mRNA gradient is translated into a gradient of FGF8 protein, which correlates with graded phosphorylation of the kinase Akt, a downstream effector of FGF signalling. Such a mechanism provides an efficient means to monitor the timing of FGF signalling, coupling the differentiation of embryonic tissues to the posterior elongation of the embryo. In addition, this mechanism provides a novel model for morphogen gradient formation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of the posterior gradient of fgf8 mRNA and FGF8 protein.
Figure 2: Expression of fgf8 is not regulated by extrinsic signals.
Figure 3: fgf8 mRNA is only transcribed at the tail-bud level of mouse and chick embryos.
Figure 4: High stability of processed fgf8 mRNAs.
Figure 5: Two different mechanisms of establishing a protein gradient.


  1. Vasiliauskas, D. & Stern, C. D. Patterning the embryonic axis: FGF signaling and how vertebrate embryos measure time. Cell 106, 133–136 (2001)

    CAS  Article  Google Scholar 

  2. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001)

    CAS  PubMed  Google Scholar 

  3. Dubrulle, J., McGrew, M. J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001)

    CAS  Article  Google Scholar 

  4. Mathis, L., Kulesa, P. M. & Fraser, S. E. FGF receptor signalling is required to maintain neural progenitors during Hensen's node progression. Nature Cell Biol. 3, 559–566 (2001)

    CAS  Article  Google Scholar 

  5. Diez del Corral, R., Breitkreuz, D. N. & Storey, K. G. Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development 129, 1681–1691 (2002)

    PubMed  Google Scholar 

  6. Bertrand, N., Medevielle, F. & Pituello, F. FGF signalling controls the timing of Pax6 activation in the neural tube. Development 127, 4837–4843 (2000)

    CAS  PubMed  Google Scholar 

  7. Chellaiah, A., Yuan, W., Chellaiah, M. & Ornitz, D. M. Mapping ligand binding domains in chimeric fibroblast growth factor receptor molecules. Multiple regions determine ligand binding specificity. J. Biol. Chem. 274, 34785–34794 (1999)

    CAS  Article  Google Scholar 

  8. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000)

    CAS  Article  Google Scholar 

  9. Corson, L. B., Yamanaka, Y., Lai, K. M. & Rossant, J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130, 4527–4537 (2003)

    CAS  Article  Google Scholar 

  10. Catala, M., Teillet, M. A. & Le Douarin, N. M. Organization and development of the tail bud analyzed with the quail–chick chimaera system. Mech. Dev. 51, 51–65 (1995)

    CAS  Article  Google Scholar 

  11. Hyman, R. W. & Davidson, N. Kinetics of the in vitro inhibition of transcription by actinomycin. J. Mol. Biol. 50, 421–438 (1970)

    CAS  Article  Google Scholar 

  12. McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquié, O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998)

    CAS  Article  Google Scholar 

  13. Kulesa, P. M. & Fraser, S. E. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–995 (2002)

    ADS  CAS  Article  Google Scholar 

  14. Stern, C. D., Fraser, S. E., Keynes, R. J. & Primmett, D. R. A cell lineage analysis of segmentation in the chick embryo. Development 104, 231–244 (1988)

    PubMed  Google Scholar 

  15. Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001)

    ADS  CAS  Article  Google Scholar 

  16. Davis, G. K. & Patel, N. H. The origin and evolution of segmentation. Trends Cell Biol. 9, M68–M72 (1999)

    CAS  Article  Google Scholar 

  17. Hogan, B. L. & Kolodziej, P. A. Organogenesis: molecular mechanisms of tubulogenesis. Nature Rev. Genet. 3, 513–523 (2002)

    CAS  Article  Google Scholar 

  18. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995)

    ADS  CAS  Article  Google Scholar 

  19. Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995)

    CAS  PubMed  Google Scholar 

  20. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136 (1996)

    CAS  Article  Google Scholar 

  21. Bottone, F. G. Jr, Martinez, J. M., Collins, J. B., Afshari, C. A. & Eling, T. E. Gene modulation by the cyclooxygenase inhibitor, sulindac sulfide, in human colorectal carcinoma cells: possible link to apoptosis. J. Biol. Chem. 278, 25790–25801 (2003)

    CAS  Article  Google Scholar 

Download references


We thank D. Duboule for discussions; G. Martin for reagents; B. Brede for help with real-time PCR; S. Fraser , D. Ish-Horowicz, P Kulesa, T. Lecuit and members of the Pourquié laboratory for comments on the manuscript. J.D. was a recipient of a fellowship from the Fondation pour la Recherche Medicale (FRM). This work was initiated in the Laboratoire of Genetique et Physiologie du Developpement in Marseille, supported by funding from the Centre National de le Recherche Scientifique (CNRS), Human Frontier Science Program Organization (HFSPO), Association Francaise contre les Myopathies and the Université de la Méditerranée-AP de Marseille. Current work is supported by the Stowers Institute and a grant from the NIH.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Olivier Pourquié.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information


Supplementary Figure 1: Salt and pepper expression of fgf8 mRNA in the caudal PSM. Sagittal section through the caudal PSM of the chick embryo hybridized with fgf8 shown in 1e. (JPG 51 kb)

Supplementary Figure Legend (DOC 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dubrulle, J., Pourquié, O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing