Centre–surround inhibition among olfactory bulb glomeruli


Centre–surround inhibition—the suppression of activity of neighbouring cells by a central group of neurons—is a fundamental mechanism that increases contrast in patterned sensory processing. The initial stage of neural processing in olfaction occurs in olfactory bulb glomeruli, but evidence for functional interactions between glomeruli is fragmentary. Here we show that the so-called ‘short axon’ cells, contrary to their name, send interglomerular axons over long distances to form excitatory synapses with inhibitory periglomerular neurons up to 20–30 glomeruli away. Interglomerular excitation of these periglomerular cells potently inhibits mitral cells and forms an on-centre, off-surround circuit. This interglomerular centre–surround inhibitory network, along with the well-established mitral–granule–mitral inhibitory circuit, forms a serial, two-stage inhibitory circuit that could enhance spatiotemporal responses to odours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Extensive interglomerular connections shown by DiI and microbead tracing.
Figure 2: Interglomerular connections derive from non-GABAergic ‘short axon’ cells.
Figure 3: Functional imaging shows extensive interglomerular excitation.
Figure 4: Interglomerular connections excite juxtaglomerular cells.
Figure 5: Interglomerular connections inhibit mitral cell responses to olfactory nerve input.
Figure 6: Centre–surround inhibitory networks in the olfactory bulb.

Change history

  • 27 March 2018

    This article was initially published with an incorrect DOI that did not match the registered version at Crossref. The DOI has been corrected in the article.


  1. 1

    Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993)

    CAS  Article  Google Scholar 

  2. 2

    Mombaerts, P. et al. The molecular biology of olfactory perception. Cold Spring Harb. Symp. Quant. Biol. 61, 135–145 (1996)

    CAS  Article  Google Scholar 

  3. 3

    Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994)

    CAS  Article  Google Scholar 

  4. 4

    Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001)

    CAS  Article  Google Scholar 

  5. 5

    Treloar, H. B., Feinstein, P., Mombaerts, P. & Greer, C. A. Specificity of glomerular targeting by olfactory sensory axons. J. Neurosci. 22, 2469–2477 (2002)

    CAS  Article  Google Scholar 

  6. 6

    Greer, C. A., Stewart, W. B., Kauer, J. S. & Shepherd, G. M. Topographical and laminar localization of 2-deoxyglucose uptake in rat olfactory bulb induced by electrical stimulation of olfactory nerves. Brain Res. 217, 279–293 (1981)

    CAS  Article  Google Scholar 

  7. 7

    Halasz, N. & Greer, C. A. Terminal arborizations of olfactory nerve fibers in the glomeruli of the olfactory bulb. J. Comp. Neurol. 337, 307–316 (1993)

    CAS  Article  Google Scholar 

  8. 8

    Jastreboff, P. J. et al. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb. Proc. Natl Acad. Sci. USA 81, 5250–5254 (1984)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Johnson, B. A. & Leon, M. Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J. Comp. Neurol. 422, 496–509 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Johnson, B. A. & Leon, M. Spatial distribution of [14C]2-deoxyglucose uptake in the glomerular layer of the rat olfactory bulb following early odor preference learning. J. Comp. Neurol. 376, 557–566 (1996)

    CAS  Article  Google Scholar 

  11. 11

    Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999)

    CAS  Article  Google Scholar 

  12. 12

    Xu, F., Kida, I., Hyder, F. & Shulman, R. G. Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc. Natl Acad. Sci. USA 97, 10601–10606 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Yang, X. et al. Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI. Proc. Natl Acad. Sci. USA 95, 7715–7720 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Rubin, B. D. & Katz, L. C. Spatial coding of enantiomers in the rat olfactory bulb. Nature Neurosci. 4, 355–356 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl Acad. Sci. USA 92, 3371–3375 (1995)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Pinching, A. J. & Powell, T. P. Experimental studies on the axons intrinsic to the glomerular layer of the olfactory bulb. J. Cell Sci. 10, 637–655 (1972)

    CAS  PubMed  Google Scholar 

  18. 18

    Pinching, A. J. & Powell, T. P. The neuropil of the periglomerular region of the olfactory bulb. J. Cell Sci. 9, 379–409 (1971)

    CAS  PubMed  Google Scholar 

  19. 19

    Pinching, A. J. & Powell, T. P. The neuron types of the glomerular layer of the olfactory bulb. J. Cell Sci. 9, 305–345 (1971)

    CAS  PubMed  Google Scholar 

  20. 20

    Cornwall, J. & Phillipson, O. T. Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres. J. Neurosci. Methods 24, 1–9 (1988)

    CAS  Article  Google Scholar 

  21. 21

    Sheikh, S. N., Martin, S. B. & Martin, D. L. Regional distribution and relative amounts of glutamate decarboxylase isoforms in rat and mouse brain. Neurochem. Int. 35, 73–80 (1999)

    CAS  Article  Google Scholar 

  22. 22

    Cajal, R. S. Histologie du Systeme Nerveux de l'Homme et des Vertebres (Maloine, Paris, 1911)

    Google Scholar 

  23. 23

    Kawano, T. & Margolis, F. L. Transsynaptic regulation of olfactory bulb catecholamines in mice and rats. J. Neurochem. 39, 342–348 (1982)

    CAS  Article  Google Scholar 

  24. 24

    Golgi, C. Sulla Fina Struttura dei Bulbi Olfattorii (Reggio-Emilia, Rome, 1875)

    Google Scholar 

  25. 25

    Mugnaini, E., Oertel, W. H. & Wouterlood, F. F. Immunocytochemical localization of GABA neurons and dopamine neurons in the rat main and accessory olfactory bulbs. Neurosci. Lett. 47, 221–226 (1984)

    CAS  Article  Google Scholar 

  26. 26

    Heyward, P., Ennis, M., Keller, A. & Shipley, M. T. Membrane bistability in olfactory bulb mitral cells. J. Neurosci. 21, 5311–5320 (2001)

    CAS  Article  Google Scholar 

  27. 27

    Carlson, G. C., Shipley, M. T. & Keller, A. Long-lasting depolarizations in mitral cells of the rat olfactory bulb. J. Neurosci. 20, 2011–2021 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Shepherd, G. M. The Synaptic Organization of the Brain (Oxford Univ. Press, New York, 1990)

    Google Scholar 

  29. 29

    Chen, W. R., Shen, G. Y., Shepherd, G. M., Hines, M. L. & Midtgaard, J. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. J. Neurophysiol. 88, 2755–2764 (2002)

    Article  Google Scholar 

  30. 30

    Chen, W. R., Xiong, W. & Shepherd, G. M. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25, 625–633 (2000)

    CAS  Article  Google Scholar 

  31. 31

    Pinching, A. J. & Powell, T. P. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9, 347–377 (1971)

    CAS  PubMed  Google Scholar 

  32. 32

    Wachowiak, M. & Cohen, L. B. Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle. J. Neurosci. 19, 8808–8817 (1999)

    CAS  Article  Google Scholar 

  33. 33

    Wachowiak, M. & Cohen, L. B. Presynaptic afferent inhibition of lobster olfactory receptor cells: reduced action-potential propagation into axon terminals. J. Neurophysiol. 80, 1011–1015 (1998)

    CAS  Article  Google Scholar 

  34. 34

    Astic, L. & Cattarelli, M. Metabolic mapping of functional activity in the rat olfactory system after a bilateral transection of the lateral olfactory tract. Brain Res. 245, 17–25 (1982)

    CAS  Article  Google Scholar 

  35. 35

    Benson, T. E., Burd, G. D., Greer, C. A., Landis, D. M. & Shepherd, G. M. High-resolution 2-deoxyglucose autoradiography in quick-frozen slabs of neonatal rat olfactory bulb. Brain Res. 339, 67–78 (1985)

    CAS  Article  Google Scholar 

  36. 36

    Johnson, B. A., Woo, C. C. & Leon, M. Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb. J. Comp. Neurol. 393, 457–471 (1998)

    CAS  Article  Google Scholar 

  37. 37

    Guthrie, K. M. & Gall, C. M. Functional mapping of odor-activated neurons in the olfactory bulb. Chem. Senses 20, 271–282 (1995)

    CAS  Article  Google Scholar 

  38. 38

    Onoda, N. Odor-induced fos-like immunoreactivity in the rat olfactory bulb. Neurosci. Lett. 137, 157–160 (1992)

    CAS  Article  Google Scholar 

  39. 39

    Martinez, D. P. & Freeman, W. J. Periglomerular cell action on mitral cells in olfactory bulb shown by current source density analysis. Brain Res. 308, 223–233 (1984)

    CAS  Article  Google Scholar 

  40. 40

    Isaacson, J. S. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron 23, 377–384 (1999)

    CAS  Article  Google Scholar 

  41. 41

    Grossberg, S. Neural pattern discrimination. J. Theor. Biol. 27, 291–337 (1970)

    CAS  Article  Google Scholar 

  42. 42

    Grossberg, S. Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976)

    MathSciNet  CAS  Article  Google Scholar 

  43. 43

    Aroniadou-Anderjaska, V., Ennis, M. & Shipley, M. T. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices. Neuroscience 79, 425–434 (1997)

    CAS  Article  Google Scholar 

  44. 44

    Laurent, G. et al. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001)

    CAS  Article  Google Scholar 

  45. 45

    Kauer, J. S., Senseman, D. M. & Cohen, L. B. Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res. 418, 255–261 (1987)

    CAS  Article  Google Scholar 

  46. 46

    Kauer, J. S. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature 331, 166–168 (1988)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Aroniadou-Anderjaska, V., Zhou, F. M., Priest, C. A., Ennis, M. & Shipley, M. T. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABAB heteroreceptors. J. Neurophysiol. 84, 1194–1203 (2000)

    CAS  Article  Google Scholar 

Download references


The authors thank F. L. Margolis for expert assistance in ZnSO4 epithelium lesions and A. Keller for valuable comments on the manuscript. This work was supported by the National Institute on Deafness and Other Communication Disorders.

Author information



Corresponding author

Correspondence to M. T. Shipley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aungst, J., Heyward, P., Puche, A. et al. Centre–surround inhibition among olfactory bulb glomeruli. Nature 426, 623–629 (2003). https://doi.org/10.1038/nature02185

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing