
(100–441) and Tc1-intron (321–566) (numbers from genomic sequence). The probe used
for gfpwas gfp1 (19–319) (numbered fromATG). Details of the probes used for analyses of
Tc3 and Tc5 dsRNA are available on request. 5 0 -RACE analyses used the SmartII kit
(Clontech), SuperScriptII reverse transcriptase (GibcoBRL) and Pwo DNA polymerase.
S100H fractions were prepared as described in ref. 25. Standard procedures were used for
primer-extension analyses. Sequences of all primers used are available on request.
Quantification of protected fragments (RNase protection assays) was performed using
ImageQuant software.

Transgenic lines
The chimaeric gfp reporter plasmids were produced by inserting various fragments into
plasmid pAZ132 (ref. 26). Plasmid pAZ1 (TIR fusion) contained nucleotides 1–54 of Tc1
(genomic sequence) in the sense orientation in the SgrAI site. Plasmid pAZ4 (unc-22
fusion) contained nucleotides 11,137–11,190 of unc-22 (spliced sequence) in the sense
orientation in the SgrAI site. Plasmid pAZbb (TIR 3

0
stop) contained nucleotides 1–54 of

Tc1 in the sense orientation in the BsaBI site. To prevent transgene silencing due to the
presence of high transgene copy numbers27, low-copy-number transgenic lines were
generated by ballistic transformation28 using a heptamer adaptor (Bio-Rad).
Transformants were generated in unc-119(dp38) worms. All lines were selected and they
were analysed for GFP expression on both wild-type (OP50) and mut-16 dsRNA food.
Worms were grown under these conditions for two generations. Lines not expressing GFP
under any of these conditions were discarded; these included six TIR fusion lines, two unc-
22 fusion lines and ten TIR 3

0
stop lines. By DNA blot analyses (carried out according to

standard procedures), transgene copy number was determined using SacII- and BglII-
digested genomic DNA and gfp- and pBlueScript-specific probes. Crosses using pkIs1660
showed that all three transgene copies in this line reside at one locus and segregate in a
mendelian manner. However, the transgenes can be lost (presumably due to
recombination), as is apparent from the presence of worms with an unc-119 phenotype
(PCR analyses confirmed transgene loss in these worms). Transgene loss is not uncommon
for ballistic-generated transformants and varies for the lines as follows: pkIs1660, 1%;
pkIs1661, 10%; pkIs1662, 10%; pkIs1663, 2%; pkIs1664, 80%; pkIs1665, 0%; pkIs1666, 1%;
pkIs1667, 50%; pkIs1668, 0%; pkIs1669, 0%; pkIs1671, 0%; and pkIs1672, 0%.
Interestingly, transgene loss strongly increases upon crossing to strains defective in
transposon silencing (mut-7 and pk732 but not rde-1); this transgene loss is not dependent
on the presence of the Tc1 TIR sequence, as it also occurs upon crossingmut-7 to pkIs1665,
an unc-22 fusion line.

dsRNAs
Plasmids for dsRNA production in E. coli comprised pTS302 dsRNA11 (for unc-22) and
pTS303 (containing nucleotides 1–441 of the Tc1 genomic sequence inserted into the
SmaI site of vector L4440 (ref. 29)). E. coli expressing mut-16 dsRNAwere obtained from
well number 17C5 of the C. elegans feeding library30.
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