Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum

Abstract

Tectonic plate motion is thought to cause solid-state plastic flow within the underlying upper mantle and accordingly lead to the development of a lattice preferred orientation of the constituent olivine crystals1,2,3. The mechanical anisotropy that results from such preferred orientation typically produces a direction of maximum seismic wave velocity parallel to the plate motion direction4,5. This has been explained by the existence of an olivine preferred orientation with an ‘a-axis’ maximum parallel to the induced mantle flow direction3,5,6,7,8. In subduction zones, however, the olivine a axes have been inferred to be arranged roughly perpendicular to plate motion9,10,11,12,13, which has usually been ascribed to localized complex mantle flow patterns10,11,12,13. Recent experimental work14 suggests an alternative explanation: under conditions of high water activity, a ‘B-type’ olivine preferred orientation may form, with the a-axis maximum perpendicular to the flow direction. Natural examples of such B-type preferred orientation are, however, almost entirely unknown. Here we document widespread B-type olivine preferred orientation patterns from a subduction-type metamorphic belt in southwest Japan and show that these patterns developed in the presence of water. Our discovery implies that mantle flow above subduction zones may be much simpler than has generally been thought.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Photomicrographs of dunite in the Higashi-akaishi body (crossed polars).
Figure 2: Structural analysis of olivine fabrics.
Figure 3: Micro-inclusions indicating the presence of water during the D2 stage.
Figure 4: Mineral chemistry in garnet peridotite.

References

  1. Nicolas, A. & Christensen, N. I. Formation of anisotropy in upper mantle peridotites—a review. In Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System (eds Fuchs, K. & Froideoaux, C.) 111–123 (1987)

    Chapter  Google Scholar 

  2. Carter, N. L. & Ave'Lallemant, H. G. High temperature flow of dunite and peridotite. Geol. Soc. Am. Bull. 81, 2181–2202 (1970)

    ADS  CAS  Article  Google Scholar 

  3. Zhang, S. & Karato, S. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375, 774–777 (1995)

    ADS  CAS  Article  Google Scholar 

  4. Raitt, R. W., Shor, G. G., Francis, T. J. G. & Morris, G. B. Anisotropy of the Pacific upper mantle. J. Geophys. Res. 74, 3095–3109 (1969)

    ADS  Article  Google Scholar 

  5. Christensen, N. I. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophys. J. R. Astron. Soc. 76, 89–111 (1984)

    ADS  Article  Google Scholar 

  6. Hess, H. H. Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629–631 (1964)

    ADS  Article  Google Scholar 

  7. Francis, T. J. G. Generation of seismic anisotropy in the upper mantle along the mid-oceanic ridges. Nature 221, 162–165 (1969)

    ADS  Article  Google Scholar 

  8. Peselnick, L., Nicolas, A. & Stevenson, P. R. Velocity anisotropy in a mantle peridotite from the Ivrea zone: application to upper mantle anisotropy. J. Geophys. Res. 79, 1175–1182 (1974)

    ADS  Article  Google Scholar 

  9. Ando, M., Ishikawa, Y. & Yamazaki, F. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res. 88, 5850–5864 (1983)

    ADS  Article  Google Scholar 

  10. Shih, X. R., Schneider, J. F. & Meyer, R. P. Polarities of P and S waves, and shear wave splitting observed from the Bucaramanga Nest, Colombia. J. Geophys. Res. 96, 12069–12082 (1991)

    ADS  Article  Google Scholar 

  11. Yang, X. & Fischer, K. M. Seismic anisotropy beneath the Shumagin Islands segment of the Aleutian-Alaska subduction zone. J. Geophys. Res. 100, 18165–18177 (1995)

    ADS  Article  Google Scholar 

  12. Fouth, M. J. & Fischer, K. M. Mantle anisotropy beneath northwest Pacific subduction zones. J. Geophys. Res. 101, 15897–16002 (1996)

    ADS  Google Scholar 

  13. Smith, G. P. et al. A complex pattern of mantle flow in the Lau backarc. Science 292, 713–716 (2001)

    ADS  CAS  Article  Google Scholar 

  14. Jung, H. & Karato, S. Water-induced fabric transitions in olivine. Science 293, 1460–1463 (2001)

    ADS  CAS  Article  Google Scholar 

  15. Enami, M., Mizukami, T. & Yokoyama, K. Metamorphic evolution of garnet-bearing ultramafic rocks from the Gongen area, Sanbagawa belt, Japan. J. Metamorph. Geol. 22, 1–15 (2004)

    ADS  CAS  Article  Google Scholar 

  16. Yoshino, G. Structural-petrological studies of peridotite and associated rocks of the Higashi-akaishi-yama District, Shikoku, Japan. J. Sci. Hiroshima Univ. C 3, 343–402 (1961)

    Google Scholar 

  17. Banno, S. & Sakai, C. Geology and metamorphic evolution of the Sanbagawa metamorphic belt, Japan. In Evolution of Metamorphic Belts (eds Daley, J. S., Cliff, R. A. & Yardley, B. W. D.) 519–532 (1989)

    Google Scholar 

  18. Takasu, A. & Dallmeyer, R. D. 40Ar/39Ar mineral age constraints for the tectonothermal evolution of the Sambagawa metamorphic belt, central Shikoku, Japan: a Cretaceous accretionary prism. Tectonophysics 185, 111–139 (1990)

    ADS  CAS  Article  Google Scholar 

  19. Wallis, S. Exhuming the Sanbagawa metamorphic belt: the importance of tectonic discontinuities. J. Metamorph. Geol. 16, 83–95 (1998)

    ADS  Article  Google Scholar 

  20. Mori, T. & Banno, S. Petrology of peridotite and garnet clinopyroxenite of the Mt. Higashi Akaishi mass, central Shikoku, Japan—subsolidus relation of anhydrous phases. Contrib. Mineral. Petrol. 41, 301–323 (1973)

    ADS  CAS  Article  Google Scholar 

  21. Mercier, J.-C. C. & Nicolas, A. Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J. Petrol. 16, 454–487 (1975)

    ADS  Article  Google Scholar 

  22. Boudier, F. & Nicolas, A. Nature of the Moho transition zone in the Oman ophiolite. J. Petrol. 36, 777–796 (1995)

    ADS  CAS  Article  Google Scholar 

  23. Hirai, H. & Arai, S. H2O–CO2 fluids supplied in alpine-type mantle peridotites: electron petrology of relic fluid inclusions in olivines. Earth Planet. Sci. Lett. 85, 311–318 (1987)

    ADS  CAS  Article  Google Scholar 

  24. Harley, S. L. & Green, D. H. Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300, 697–701 (1982)

    ADS  CAS  Article  Google Scholar 

  25. Rossman, G. R. Vibrational spectroscopy of hydrous components. Rev. Mineral. 18, 193–206 (1988)

    CAS  Google Scholar 

Download references

Acknowledgements

S. Wallis aided in the field studies for this work and was closely involved in developing the rationale for the study. J. Yamamoto carried out the laser micro-Raman spectroscopic analyses. We thank H. Kagi for his support during these analyses and for discussion on this work. We also thank M. Enami and M. Obata for their comments. This work was supported in part by a grant from the Fukada Geological Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Mizukami.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mizukami, T., Wallis, S. & Yamamoto, J. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature 427, 432–436 (2004). https://doi.org/10.1038/nature02179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02179

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing