Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bayesian integration in sensorimotor learning


When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate1,2,3,4. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory5,6, an optimal estimate results from combining information about the distribution of velocities—the prior—with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process4,5. The central nervous system therefore employs probabilistic models during sensorimotor learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experiment and models.
Figure 2: Results for a gaussian distribution.
Figure 3: Results for a mixture of gaussian distributions.

Similar content being viewed by others


  1. van Beers, R. J., Sittig, A. C. & Gon, J. J. Integration of proprioceptive and visual position-information: An experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs, R. A. Optimal integration of texture and motion cues to depth. Vision Res. 39, 3621–3629 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hillis, J. M., Ernst, M. O., Banks, M. S. & Landy, M. S. Combining sensory information: mandatory fusion within, but not between, senses. Science 298, 1627–1630 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Cox, R. T. Probability, frequency and reasonable expectation. Am. J. Phys. 17, 1–13 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bernardo, J. M. & Smith, A. F. M. Bayesian Theory (Wiley, New York, 1994)

    Book  Google Scholar 

  7. Berrou, C., Glavieux, A. & Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: turbo-codes. Proc. ICC'93, Geneva, Switzerland 1064–1070 (1993)

  8. Simoncelli, E. P. & Adelson, E. H. Noise removal via Bayesian wavelet coring. Proc. 3rd International Conference on Image Processing, Lausanne, Switzerland, September, 379–382 (1996)

  9. Olshausen, B. A. & Millman, K. J. in Advances in Neural Information Processing Systems vol. 12 (eds Solla, S. A., Leen, T. K. & Muller, K. R.) 841–847 (MIT Press, 2000)

    Google Scholar 

  10. Rao, R. P. N. An optimal estimation approach to visual perception and learning. Vision Res. 39, 1963–1989 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. The ‘wake–sleep’ algorithm for unsupervised neural networks. Science 268, 1158–1161 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sahani, M. & Dayan, P. Doubly distributional population codes: Simultaneous representation of uncertainty and multiplicity. Neural Comput. 15, 2255–2279 (2003)

    Article  PubMed  Google Scholar 

  13. Yu, A. J. & Dayan, P. Acetylcholine in cortical inference. Neural Netw. 15, 719–730 (2002)

    Article  PubMed  Google Scholar 

  14. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal percepts. Nature Neurosci. 5, 598–604 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Soechting, J. F. & Flanders, M. Errors in pointing are due to approximations in sensorimotor transformations. J. Neurophysiol. 62, 595–608 (1989)

    Article  CAS  PubMed  Google Scholar 

  16. Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. Lacquaniti, F. & Caminiti, R. Visuo-motor transformations for arm reaching. Eur. J. Neurosci. 10, 195–203 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Van Beers, R. J., Baraduc, P. & Wolpert, D. M. Role of uncertainty in sensorimotor control. Phil. Trans. R. Soc. Lond. B 357, 1137–1145 (2002)

    Article  Google Scholar 

  19. van Beers, R. J., Wolpert, D. M. & Haggard, P. When feeling is more important than seeing in sensorimotor adaptation. Curr. Biol. 12, 834–837 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Vetter, P. & Wolpert, D. M. Context estimation for sensorimotor control. J. Neurophysiol. 84, 1026–1034 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Scheidt, R. A., Dingwell, J. B. & Mussa-Ivaldi, F. A. Learning to move amid uncertainty. J. Neurophysiol. 86, 971–985 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Basso, M. A. & Wurtz, R. H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Carpenter, R. H. & Williams, M. L. Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gold, J. I. & Shadlen, M. N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Goodbody, S. J. & Wolpert, D. M. Temporal and amplitude generalization in motor learning. J. Neurophysiol. 79, 1825–1838 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references


We thank Z. Ghahramani for discussions, and J. Ingram for technical support. This work was supported by the Wellcome Trust, the McDonnell Foundation and the Human Frontiers Science Programme.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Konrad P. Körding.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körding, K., Wolpert, D. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing