Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parallel colour-opponent pathways to primary visual cortex

Abstract

The trichromatic primate retina parses the colour content of a visual scene into ‘red/green’ and ‘blue/yellow’ representations1,2. Cortical circuits must combine the information encoded in these colour-opponent signals to reconstruct the full range of perceived colours3. Red/green and blue/yellow inputs are relayed by the lateral geniculate nucleus (LGN) of thalamus to primary visual cortex (V1), so understanding how cortical circuits transform these signals requires understanding how LGN inputs to V1 are organized. Here we report direct recordings from LGN afferent axons in muscimol-inactivated V1. We found that blue/yellow afferents terminated exclusively in superficial cortical layers 3B and 4A, whereas red/green afferents were encountered only in deeper cortex, in lower layer 4C. We also describe a distinct cortical target for ‘blue-OFF’ cells, whose afferents terminated in layer 4A and seemed patchy in organization. The more common ‘blue-ON’ afferents were found in 4A as well as lower layer 2/3. Chromatic information is thus conveyed to V1 by parallel, anatomically segregated colour-opponent systems, to be combined at a later stage of the colour circuit.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: LGN afferents recorded in muscimol-inactivated V1 were classified into four distinct groups on the basis of cone contributions.
Figure 2: Reconstructions of tangential electrode penetrations in muscimol-inactivated V1.
Figure 3: Laminar organization of colour-opponent afferents.

References

  1. Lennie, P. & D'Zmura, M. Mechanisms of color vision. Crit. Rev. Neurobiol. 3, 333–400 (1988)

    CAS  PubMed  Google Scholar 

  2. Dacey, D. M. Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23, 743–775 (2000)

    CAS  Article  Google Scholar 

  3. De Valois, R. L., Cottaris, N. P., Elfar, S. D., Mahon, L. E. & Wilson, J. A. Some transformations of color information from lateral geniculate nucleus to striate cortex. Proc. Natl Acad. Sci. USA 97, 4997–5002 (2000)

    ADS  CAS  Article  Google Scholar 

  4. Dacey, D. M., Peterson, B. B., Robinson, F. R. & Gamlin, P. D. Fireworks in the primate retina. In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 15–27 (2003)

    CAS  Article  Google Scholar 

  5. Leventhal, A. G., Rodieck, R. W. & Dreher, B. Retinal ganglion cell classes in the Old World monkey: Morphology and central projections. Science 213, 1139–1142 (1981)

    ADS  CAS  Article  Google Scholar 

  6. Michael, C. R. Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey. Proc. Natl Acad. Sci. USA 85, 4914–4918 (1988)

    ADS  CAS  Article  Google Scholar 

  7. Conley, M. & Fitzpatrick, D. Morphology of retinogeniculate axons in the macaque. Vis. Neurosci. 2, 287–296 (1989)

    CAS  Article  Google Scholar 

  8. Hubel, D. & Wiesel, T. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146, 421–450 (1972)

    CAS  Article  Google Scholar 

  9. Hendrickson, A. E., Wilson, J. R. & Ogren, M. P. The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J. Comp. Neurol. 182, 123–136 (1978)

    CAS  Article  Google Scholar 

  10. Blasdel, G. G. & Lund, J. S. Termination of afferent axons in macaque striate cortex. J. Neurosci. 3, 1389–1413 (1983)

    CAS  Article  Google Scholar 

  11. Rodieck, R. W. & Watanabe, M. Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. J. Comp. Neurol. 338, 289–303 (1993)

    CAS  Article  Google Scholar 

  12. Martin, P. R., White, A. J., Goodchild, A. K., Wilder, H. D. & Sefton, A. E. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci. 9, 1536–1541 (1997)

    CAS  Article  Google Scholar 

  13. Hendry, S. H. & Reid, R. C. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23, 127–153 (2000)

    CAS  Article  Google Scholar 

  14. Hendry, S. H. & Yoshioka, T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575–577 (1994)

    ADS  CAS  Article  Google Scholar 

  15. Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966)

    CAS  Article  Google Scholar 

  16. Schiller, P. H. & Malpeli, J. G. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol. 41, 788–797 (1978)

    CAS  Article  Google Scholar 

  17. Derrington, A. M., Krauskopf, J. & Lennie, P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 241–265 (1984)

    CAS  Article  Google Scholar 

  18. Reid, R. C. & Shapley, R. M. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J. Neurosci. 22, 6158–6175 (2002)

    CAS  Article  Google Scholar 

  19. Valberg, A., Lee, B. B. & Tigwell, D. A. Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Res. 26, 1061–1064 (1986)

    CAS  Article  Google Scholar 

  20. Ringach, D. L., Sapiro, G. & Shapley, R. A subspace reverse-correlation technique for the study of visual neurons. Vision Res. 37, 2455–2464 (1997)

    CAS  Article  Google Scholar 

  21. Dacey, D. M. & Lee, B. B. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994)

    ADS  CAS  Article  Google Scholar 

  22. Calkins, D. J. & Sterling, P. Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24, 313–321 (1999)

    CAS  Article  Google Scholar 

  23. Ahmad, K. M., Klug, K., Herr, S., Sterling, P. & Schein, S. Cell density ratios in a foveal patch in macaque retina. Vis. Neurosci. 20, 189–209 (2003)

    Article  Google Scholar 

  24. Klug, K., Herr, S., Ngo, I. T., Sterling, P. & Schein, S. J. Macaque retina contains an S-cone OFF midget pathway. J. Neurosci. 23, 9881–9887 (2003)

    CAS  Article  Google Scholar 

  25. Blasdel, G. G. & Fitzpatrick, D. Physiological organization of layer 4 in macaque striate cortex. J. Neurosci. 4, 880–895 (1984)

    CAS  Article  Google Scholar 

  26. Chapman, B., Zahs, K. R. & Stryker, M. P. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J. Neurosci. 11, 1347–1358 (1991)

    CAS  Article  Google Scholar 

  27. Stockman, A., MacLeod, D. I. & Johnson, N. E. Spectral sensitivities of the human cones. J. Opt. Soc. Am. A 10, 2491–2521 (1993)

    ADS  CAS  Article  Google Scholar 

  28. Wandell, B. A. Foundations of Vision 413–421 (Sinauer, Sunderland, MA, 1995)

    Google Scholar 

  29. Chichilnisky, E. J. & Baylor, D. A. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nature Neurosci. 2, 889–893 (1999)

    CAS  Article  Google Scholar 

  30. Chatterjee, S. & Callaway, E. M. S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 1135–1146 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Ringach for providing software used for visual stimulation, spike sorting, and some data analysis; E. J. Chichilnisky for help with stimulus calibration and design; and E. J. Chichilnisky and G. Horwitz for a critical reading of the manuscript. We also thank S. Tye for surgical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Chatterjee.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chatterjee, S., Callaway, E. Parallel colour-opponent pathways to primary visual cortex. Nature 426, 668–671 (2003). https://doi.org/10.1038/nature02167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02167

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing