Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila

A Corrigendum to this article was published on 25 March 2004

Abstract

Drosophila thoracic mechanosensory bristles originate from cells that are singled out from ‘proneural’ groups of competent epithelial cells. Neural competence is restricted to individual sensory organ precursors (SOPs) by Delta/Notch-mediated ‘lateral inhibition’, whereas other cells in the proneural field adopt an epidermal fate. The precursors of the large macrochaetes differentiate separately from individual proneural clusters that comprise about 20–30 cells or as heterochronic pairs from groups of more than 100 cells1, whereas the precursors of the small regularly spaced microchaetes emerge from even larger proneural fields2. This indicates that lateral inhibition might act over several cell diameters; it was difficult to reconcile with the fact that the inhibitory ligand Delta is membrane-bound until the observation that SOPs frequently extend thin processes3,4 offered an attractive hypothesis. Here we show that the extension of these planar filopodia—a common attribute of wing imaginal disc cells—is promoted by Delta and that their experimental suppression reduces Notch signalling in distant cells and increases bristle density in large proneural groups, showing that these membrane specializations mediate long-range lateral inhibition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Confocal imaging of anti-GFP immunofluorescent labelling of wing disc cells expressing CD8–GFP (ac, ei) or Delta–GFP (d) at the puparium formation stage unless otherwise stated.
Figure 2: Effect of ezrin-DN and Delta on the extent of SOP filopodia web.
Figure 3: Effect of ezrin-DN and Delta expression in SOPs on the range of lateral inhibition.

References

  1. Huang, F., Dambly-Chaudiere, C. & Ghysen, A. The emergence of sense organs in the wing disc of Drosophila. Development 111, 1087–1095 (1991)

    CAS  PubMed  Google Scholar 

  2. Usui, K. & Kimura, K. Sequential emergence of the evenly spaced microchaetes on the notum of Drosophila. Roux's Arch. Dev. Biol. 203, 151–158 (1993)

    Article  Google Scholar 

  3. Lai, E. C. & Rubin, G. M. neuralized functions cell-autonomously to regulate a subset of notch-dependent processes during adult Drosophila development. Dev. Biol. 231, 217–233 (2001)

    Article  CAS  Google Scholar 

  4. Renaud, O. & Simpson, P. scabrous modifies epithelial cell adhesion and extends the range of lateral signalling during development of the spaced bristle pattern in Drosophila. Dev. Biol. 240, 361–376 (2001)

    Article  CAS  Google Scholar 

  5. Wigglesworth, V. B. Local and general factors in the development of ‘pattern’ in Rhodnius prolixus Hemiptera. J. Exp. Biol. 17, 180–200 (1940)

    Google Scholar 

  6. Parks, A. L. & Muskavitch, M. A. Delta function is required for bristle organ determination and morphogenesis in Drosophila. Dev. Biol. 157, 484–496 (1993)

    Article  CAS  Google Scholar 

  7. Jennings, B., Preiss, A., Delidakis, C. & Bray, S. The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120, 3537–3548 (1994)

    CAS  PubMed  Google Scholar 

  8. Lecourtois, M. & Schweisguth, F. The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev. 9, 2598–2608 (1995)

    Article  CAS  Google Scholar 

  9. Zeng, C., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta and Serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev. 12, 1086–1091 (1998)

    Article  CAS  Google Scholar 

  10. Qi, H. et al. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283, 91–94 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Mishra-Gorur, K., Rand, M. D., Perez-Villamil, B. & Artavanis-Tsakonas, S. Down-regulation of Delta by proteolytic processing. J. Cell Biol. 159, 313–324 (2002)

    Article  CAS  Google Scholar 

  12. Kooh, P. J., Fehon, R. G. & Muskavitch, M. A. Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117, 493–507 (1993)

    CAS  PubMed  Google Scholar 

  13. Sanson, B., Alexandre, C., Fascetti, N. & Vincent, J. P. Engrailed and hedgehog make the range of Wingless asymmetric in Drosophila embryos. Cell 98, 207–216 (1999)

    Article  CAS  Google Scholar 

  14. Milan, M., Weihe, U., Perez, L. & Cohen, S. M. The LRR proteins capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell 106, 785–794 (2001)

    Article  CAS  Google Scholar 

  15. Locke, M. & Huie, P. Epidermal feet in insect morphogenesis. Nature 293, 733–735 (1981)

    Article  ADS  CAS  Google Scholar 

  16. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990)

    Article  CAS  Google Scholar 

  17. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002)

    Article  CAS  Google Scholar 

  18. Martin, M. et al. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J. Cell Biol. 128, 1081–1093 (1995)

    Article  CAS  Google Scholar 

  19. Martin, M., Roy, C., Montcourrier, P., Sahuquet, A. & Mangeat, P. Three determinants in ezrin are responsible for cell extension activity. Mol. Biol. Cell 8, 1543–1557 (1997)

    Article  CAS  Google Scholar 

  20. Meir, E., von Dassow, G., Munro, E. & Odell, G. M. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–786 (2002)

    Article  CAS  Google Scholar 

  21. Turing, A. M. The chemical basis for morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50–57 (2001)

    Article  CAS  Google Scholar 

  23. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

  24. Hinz, U., Giebel, B. & Campos-Ortega, J. A. The basic-helix–loop–helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell 76, 77–87 (1994)

    Article  CAS  Google Scholar 

  25. Seugnet, L., Simpson, P. & Haenlin, M. Transcriptional regulation of Notch and Delta: requirement for neuroblast segregation in Drosophila. Development 124, 2015–2025 (1997)

    CAS  PubMed  Google Scholar 

  26. Haenlin, M., Kunisch, M., Kramatschek, B. & Campos-Ortega, J. A. Genomic regions regulating early embryonic expression of the Drosophila neurogenic gene Delta. Mech. Dev. 47, 99–110 (1994)

    Article  CAS  Google Scholar 

  27. Bender, L. B., Kooh, P. J. & Muskavitch, M. A. Complex function and expression of Delta during Drosophila oogenesis. Genetics 133, 967–978 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamb, R. F. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997)

    Article  CAS  Google Scholar 

  29. Andreoli, C., Martin, M., Le Borgne, R., Reggio, H. & Mangeat, P. Ezrin has properties to self-associate at the plasma membrane. J. Cell Sci. 107, 2509–2521 (1994)

    CAS  PubMed  Google Scholar 

  30. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was initiated in the unité INSERM 432, Université Montpellier II. We thank S. Baghdiguian, C. Dambly-Chaudière, A. Ghysen, S. Layalle, P.-H. Mangeat and A.-M. Martinez for discussions; C. Dambly-Chaudière, M. Haenlin, F. Schweisguth, J.-P. Vincent, the Bloomington Stock Center and the Developmental Studies Hybridoma Bank for fly stocks and reagents; N. Lautrédou-Audouy for help with confocal microscopy; F. Mérezègue for help with electron microscopy; E. Gazave and A. Sahuquet for help with morphometry and statistics; and C. Roy for critically reading the manuscript. C.d.J. and D.A. thank the researchers into Drosophila at the Institut de Génétique Humaine (Montpellier) for hospitality. This work was supported by grants to D.A. from the Association pour la Recherche contre le Cancer and the Université Montpellier II. C.d.J. was supported by the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alexandre.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Joussineau, C., Soulé, J., Martin, M. et al. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559 (2003). https://doi.org/10.1038/nature02157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing