Subjects

Abstract

Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts1,2,3,4,5,6 the existence of quasars gravitationally lensed by concentrations of dark matter7 so massive that the quasar images would be split by over 7 arcsec. Numerous searches8,9,10,11 for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known12, including the first lensed quasar discovered13, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies14 with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations3,4,5 based on the cold-dark-matter model.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Narayan, R. & White, S. D. M. Gravitational lensing in a cold dark matter universe. Mon. Not. R. Astron. Soc. 231, 97–103 (1988)

  2. 2

    Wambsganss, J., Cen, R., Ostriker, J. P. & Turner, E. L. Testing cosmogonic models with gravitational lensing. Science 268, 274–276 (1995)

  3. 3

    Keeton, C. R. & Madau, P. Lensing constraints on the cores of massive dark matter halos. Astrophys. J. 549, L25–L28 (2001)

  4. 4

    Wyithe, J. S. B., Turner, E. L. & Spergel, D. N. Gravitational lens statistics for generalized NFW profiles: Parameter degeneracy and implications for self-interacting cold dark matter. Astrophys. J. 555, 504–523 (2001)

  5. 5

    Takahashi, R. & Chiba, T. Gravitational lens statistics and the density profile of dark halos. Astrophys. J. 563, 489–496 (2001)

  6. 6

    Oguri, M. Constraints on the baryonic compression and implications for the fraction of dark halo lenses. Astrophys. J. 580, 2–11 (2002)

  7. 7

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

  8. 8

    Maoz, D., Rix, H., Gal-Yam, A. & Gould, A. Survey for large-image separation lensed quasars. Astrophys. J. 486, 75–84 (1997)

  9. 9

    Ofek, E. O., Maoz, D., Prada, F., Kolatt, T. & Rix, H. A survey for large-separation lensed FIRST quasars. Mon. Not. R. Astron. Soc. 324, 463–472 (2001)

  10. 10

    Phillips, P. M. et al. The JVAS/CLASS search for 6-arcsec to 15-arcsec image separation lensing. Mon. Not. R. Astron. Soc. 328, 1001–1015 (2001)

  11. 11

    Zhdanov, V. I. & Surdej, J. Quasar pairs with arcminute angular separations. Astron. Astrophys. 372, 1–7 (2001)

  12. 12

    Kochanek, C. S. et al. CASTLES survey. 〈http://cfa-www.harvard.edu/castles/〉 (2003).

  13. 13

    Walsh, D., Carswell, R. F. & Weymann, R. J. 0957 + 561 A, B — Twin quasistellar objects or gravitational lens? Nature 279, 381–384 (1979)

  14. 14

    Colley, W. N., Tyson, J. A. & Turner, E. L. Unlensing multiple arcs in 0024 + 1654: Reconstruction of the source image. Astrophys. J. 461, L83–L86 (1996)

  15. 15

    Turner, E. L., Ostriker, J. P. & Gott, J. R. III The statistics of gravitational lenses—the distributions of image angular separations and lens redshifts. Astrophys. J. 284, 1–22 (1984)

  16. 16

    York, D. G. et al. The Sloan Digital Sky Survey: Technical summary. Astron. J. 120, 1579–1587 (2000)

  17. 17

    Stoughton, C. et al. Sloan Digital Sky Survey: Early data release. Astron. J. 123, 485–548 (2002)

  18. 18

    Gunn, J. E. et al. The Sloan Digital Sky Survey photometric camera. Astron. J. 116, 3040–3081 (1998)

  19. 19

    Pier, J. R. et al. Astrometric calibration of the Sloan Digital Sky Survey. Astron. J. 125, 1559–1579 (2003)

  20. 20

    Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J. & Gunn, J. E. A photometricity and extinction monitor at the Apache Point Observatory. Astron. J. 122, 2129–2138 (2001)

  21. 21

    Smith, J. A. et al. The u′g′r′i′z′ standard-star system. Astron. J. 123, 2121–2144 (2002)

  22. 22

    Fukugita, M. et al. The Sloan Digital Sky Survey photometric system. Astron. J. 111, 1748–1756 (1996)

  23. 23

    Blanton, M. R. et al. An efficient targeting strategy for multiobject spectrograph surveys: The Sloan Digital Sky Survey “tiling” algorithm. Astron. J. 125, 2276–2286 (2003)

  24. 24

    Richards, G. T. et al. Spectroscopic target selection in the Sloan Digital Sky Survey: The quasar sample. Astron. J. 123, 2945–2975 (2002)

  25. 25

    Oguri, M., Taruya, A., Suto, Y. & Turner, E. L. Strong gravitational lensing time delay statistics and the density profile of dark halos. Astrophys. J. 568, 488–499 (2002)

  26. 26

    Kashikawa, N. et al. FOCAS: The Faint Object Camera and Spectrograph for the Subaru Telescope. Publ. Astron. Soc. Jpn 54, 819–832 (2002)

  27. 27

    Cao, L., Wei, J.-Y. & Hu, J.-Y. High X-ray-to-optical flux ratio RASS-BSC sources. I. The optical identification. Astron. Astrophys. Suppl. 135, 243–253 (1999)

  28. 28

    Keeton, C. R. Computational methods for gravitational lensing. Preprint at 〈http://xxx.lanl.gov/astro-ph/0102340〉 (2001).

  29. 29

    Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995)

  30. 30

    Miyazaki, S. et al. Subaru prime focus camera—Suprime-Cam. Publ. Astron. Soc. Jpn 54, 833–853 (2002)

Download references

Acknowledgements

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, The Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington. This Letter is based in part on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan, W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and the Apache Point Observatory (APO) 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium. Part of this work was performed under the auspices of the U.S. Department of Energy at the University of California Lawrence Livermore National Laboratory.

Author information

Affiliations

  1. Department of Physics, School of Science, The University of Tokyo, 113-0033, Japan

    • Naohisa Inada
    • , Masamune Oguri
    •  & Yasushi Suto
  2. Princeton University Observatory, Peyton Hall, Princeton, New Jersey, 08544, USA

    • Bartosz Pindor
    • , Joseph F. Hennawi
    • , Michael A. Strauss
    • , Edwin L. Turner
    • , James E. Gunn
    • , Gordon T. Richards
    • , Neta A. Bahcall
    •  & Željko Ivezić
  3. Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, Maryland, 21218, USA

    • Kuenley Chiu
    •  & Wei Zheng
  4. National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan

    • Shin-Ichi Ichikawa
  5. Department of Physics, University of California at Davis, 1 Shields Avenue, Davis, California, 95616, USA

    • Michael D. Gregg
    •  & Robert H. Becker
  6. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, L-413, 7000 East Avenue, Livermore, California, 94550, USA

    • Michael D. Gregg
    •  & Robert H. Becker
  7. Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA

    • Charles R. Keeton
    • , Joshua A. Frieman
    • , David E. Johnston
    • , Erin Scott Sheldon
    • , Don Q. Lamb
    •  & Donald G. York
  8. Fermi National Accelerator Laboratory, PO Box 500, Batavia, Illinois, 60510, USA

    • James Annis
    • , Joshua A. Frieman
    •  & Stephen M. Kent
  9. Institut d'Estudis Espacials de Catalunya/CSIC, Gran Capita 2-4, Barcelona, 08034, Spain

    • Francisco J. Castander
  10. Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona, 85721, USA

    • Daniel J. Eisenstein
  11. Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa, Chiba, 277-8582, Japan

    • Masataka Fukugita
  12. Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA

    • Robert C. Nichol
  13. Max-Planck Institute for Astronomy, Königstuhl 17, Heidelberg, D-69117, Germany

    • Hans-Walter Rix
  14. Apache Point Observatory, PO Box 59, Sunspot, New Mexico, 88349, USA

    • J. Brinkmann
  15. Department of Physics, University of Michigan, 500 East University Avenue, Ann Arbor, Michigan, 48109, USA

    • Timothy A. McKay
  16. Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, 16802, University Park, Pennsylvania, USA

    • Donald P. Schneider
  17. Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA

    • Donald G. York

Authors

  1. Search for Naohisa Inada in:

  2. Search for Masamune Oguri in:

  3. Search for Bartosz Pindor in:

  4. Search for Joseph F. Hennawi in:

  5. Search for Kuenley Chiu in:

  6. Search for Wei Zheng in:

  7. Search for Shin-Ichi Ichikawa in:

  8. Search for Michael D. Gregg in:

  9. Search for Robert H. Becker in:

  10. Search for Yasushi Suto in:

  11. Search for Michael A. Strauss in:

  12. Search for Edwin L. Turner in:

  13. Search for Charles R. Keeton in:

  14. Search for James Annis in:

  15. Search for Francisco J. Castander in:

  16. Search for Daniel J. Eisenstein in:

  17. Search for Joshua A. Frieman in:

  18. Search for Masataka Fukugita in:

  19. Search for James E. Gunn in:

  20. Search for David E. Johnston in:

  21. Search for Stephen M. Kent in:

  22. Search for Robert C. Nichol in:

  23. Search for Gordon T. Richards in:

  24. Search for Hans-Walter Rix in:

  25. Search for Erin Scott Sheldon in:

  26. Search for Neta A. Bahcall in:

  27. Search for J. Brinkmann in:

  28. Search for Željko Ivezić in:

  29. Search for Don Q. Lamb in:

  30. Search for Timothy A. McKay in:

  31. Search for Donald P. Schneider in:

  32. Search for Donald G. York in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to Naohisa Inada.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature02153

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.