Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic–inorganic interactions in petroleum-producing sedimentary basins

Abstract

Petroleum deposits form as a consequence of the increased temperatures that accompany progressive burial of organic matter deep within sedimentary basins. Recent advances in petroleum geochemistry suggest that inorganic sedimentary components participate in organic transformations associated with this process. Water is particularly important because it facilitates reaction mechanisms not available in dry environments, and may contribute hydrogen and oxygen for the formation of hydrocarbons and oxygenated alteration products. These findings suggest that petroleum generation and stability is influenced by subsurface chemical environments, and is a simple function of time, temperature and the composition of sedimentary organic matter.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Chemical evolution of kerogen and petroleum during thermal maturation in sedimentary basins.
Figure 2: Reaction pathways responsible for the stepwise oxidation of aqueous n-alkanes at elevated temperatures and pressures.
Figure 3: Evidence for the production of oxygenated organic alteration products at levels deep within sedimentary basins.
Figure 4: Variations in the partial pressure of carbon dioxide with subsurface temperature in natural gas from the US Gulf Coast (modified from ref. 79).

References

  1. Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence (Springer, New York, 1984).

    Google Scholar 

  2. Hunt, J. M. Petroleum Geochemistry and Geology (W.H. Freeman, San Francisco, 1996).

    Google Scholar 

  3. Miknis, F. P., Turner, T. F., Berdan, G. L. & Conan, P. J. Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales. Energy Fuels 1, 477–483 (1987).

    CAS  Google Scholar 

  4. Lewan, M. D. Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta 61, 3691–3723 (1997).

    ADS  CAS  Google Scholar 

  5. Ziegel, E. R. & Gorman, J. W. Kinetic moedlling with mutltiresponse data. Technometrics 22, 139–151 (1980).

    Google Scholar 

  6. Burnham, A. K. in Composition, Geochemistry and Conversion of Oil Shales (ed. Shape, C. E.) 211–227 (D. Reidel, Dordrecht, 1995).

    Google Scholar 

  7. Kissin, Y. V. Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum. Geochim. Cosmochim. Acta 51, 2445–2457 (1987).

    ADS  CAS  Google Scholar 

  8. Hunt, J. M. Generation and migration of light hydrocarbons. Science 226, 1265–1270 (1984).

    ADS  CAS  PubMed  Google Scholar 

  9. Lewan, M. D. Evaluation of petroleum generation by hydrous pyrolysis. Phil. Trans. R. Soc. Lond. 315, 123–134 (1985).

    ADS  CAS  Google Scholar 

  10. Orr, W. L. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Org. Geochem. 10, 499–516 (1986).

    CAS  Google Scholar 

  11. Baskin, D. K. & Peters, K. E. Early generation characteristics of a sulfur-rich Monterey oils. Org. Geochem. 10, 499–516 (1986).

    Google Scholar 

  12. Tomic, J., Behar, F., Vandenbroucke, M. & Tang, Y. Artificial maturation of Monterey kerogen (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur. Org. Geochem. 23, 647–660 (1995).

    CAS  Google Scholar 

  13. Lewan, M. D. Sulfur-radical control on rates of natural petroleum formation. Nature 391, 164–166 (1998).

    ADS  CAS  Google Scholar 

  14. Brooks, B. T. Evidence of catalytic action in petroleum formation. Indust. Eng. Chem. 44, 2570–2577 (1952).

    CAS  Google Scholar 

  15. Goldstein, T. P. Geocatalytic reactions in formation and maturation of petroleum. Bull. Am. Assoc. Petrol. Geol. 67, 152–159 (1983).

    CAS  Google Scholar 

  16. Tannenbaum, E., Huizinga, B. J. & Kaplan, I. R. Role of minerals in thermal alteration of organic matter-II: A material balance. Bull. Am. Assoc. Petrol. Geol. 70, 1156–1165 (1986).

    ADS  CAS  Google Scholar 

  17. Tannenbaum, E. & Kaplan, I. R. Low-M, hydrocarbons generated during hydrous and dry pyrolysis of kerogen. Nature 317, 708–709 (1985).

    ADS  CAS  PubMed  Google Scholar 

  18. Price, L. C. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 57, 3261–3280 (1993).

    ADS  CAS  Google Scholar 

  19. Hoering, T. C. Thermal reaction of kerogen with added water, heavy water, and pure organic substances. Org. Geochem. 5, 267–278 (1984).

    CAS  Google Scholar 

  20. Stalker, L., Farrimond, P. & Larter, S. R. Water as an oxygen source for the production of oxygenated compounds (including CO2 precursors) during kerogen maturation. Adv. Org. Geochem. 22, 477–486 (1994).

    CAS  Google Scholar 

  21. Schimmelmann, A., Bondon, J. P., Lewan, M. D. & Wintsch, R. P. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis. Org. Geochem. 32, 1009–1018 (2001).

    CAS  Google Scholar 

  22. Cooles, G. P., Mackenzie, A. S. & Parkes, R. J. Non-hydrocarbons of significance in petroleum exploration: volatile fatty acids and non-hydrocarbon gases. Mineral. Mag. 51, 483–493 (1987).

    CAS  Google Scholar 

  23. Price, L. C. & Wenger, L. M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Org. Geochem. 19, 141–159 (1992).

    CAS  Google Scholar 

  24. Andresen, B., Throndsen, T., Barth, T. & Bolstad, J. Thermal generation of carbon dioxide and organic acids from different source rocks. Org. Geochem. 21, 1229–1242 (1994).

    CAS  Google Scholar 

  25. Seewald, J. S., Benitez-Nelson, B. C. & Whelan, J. K. Laboratory and theoretical constraints on the generation and composition of natural gas. Geochim. Cosmochim. Acta 62, 1599–1617 (1998).

    ADS  CAS  Google Scholar 

  26. Sweeney, J. J., Braun, R. L., Burnham, A. K., Talukdar, S. & Vallejos, C. Chemical kinetic model of hydrocarbon generation, expulsion, and destruction applied to the Maracaibo Basin, Venezuela. Bull. Am. Assoc. Petrol. Geol. 79, 1515–1532 (1995).

    CAS  Google Scholar 

  27. Hunt, J. M., Whelan, J. K., Eglinton, L. B. & Cathles, L. M. III. in Abnormal Pressures in Hydrocarbon Environments (eds Law, B. E., Ulmishek, G. F. & Slavin, V. I.) 87–104 (AAPG Memoir 70, 1998).

    Google Scholar 

  28. Espitalie, J., Makadi, K. S. and Trichet, J. Role of mineral matrix during kerogen pyrolysis. Org. Geochem. 6, 365–382 (1984).

    CAS  Google Scholar 

  29. Horsfield, B. & Douglas, A. G. The influence of minerals on the pyrolysis of kerogens. Geochim. Cosmochim. Acta 44, 1119–1131 (1980).

    ADS  CAS  Google Scholar 

  30. Huizinga, B. J., Tannenbaum, E. & Kaplan, I. R. The role of minerals in the thermal alteration of organic matter-III. Generation of bitumen in laboratory experiments. Org. Geochem. 11, 591–604 (1987).

    ADS  CAS  PubMed  Google Scholar 

  31. Lafargue, E., Espitalie, J., Jacobsen, T. & Eggen, S. Experimental simulation of hydrocarbon expulsion. Org. Geochem. 16, 121–131 (1989).

    Google Scholar 

  32. Treiber, L. E., Archer, D. L. & Owens, W. W. Laboratory evaluation of the wettability of 55 oil producing reservoirs. Soc. Petrol. Engin. J. 12, 531–540 (1992).

    Google Scholar 

  33. Karlsen, D., Nedkvitne, T., Larter, S. R. & Bjørlykke, K. Hydrocarbon composition of authigenic inclusions: Application to elucidation of petroleum reservoir filling history. Geochim. Cosmochim. Acta 57, 3641–3659 (1993).

    ADS  CAS  Google Scholar 

  34. Siskin, M. & Katritzky, A. R. Reactivity of organic compounds in hot water: Geochemical and technological implications. Science 254, 231–237 (1991).

    ADS  CAS  PubMed  Google Scholar 

  35. Taylor, P., Bennett, B., Jones, M. & Larter, S. The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils. Org. Geochem. 32, 341–358 (2001).

    CAS  Google Scholar 

  36. Seewald, J. S. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370, 285–287 (1994).

    ADS  CAS  Google Scholar 

  37. McCollom, T. M., Seewald, J. S. & Simoneit, B. R. T. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 65, 455–468 (2001).

    ADS  CAS  Google Scholar 

  38. Seewald, J. S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. Geochim. Cosmochim. Acta 65, 1641–1644 (2001).

    ADS  CAS  Google Scholar 

  39. Helgeson, H. C., Knox, A. M., Owens, C. E. & Shock, E. L. Petroleum, oil field waters, and authigenic mineral assemblages: Are they in metastable equilibrium in hydrocarbon reservoirs? Geochim. Cosmochim. Acta 57, 3295–3339 (1993).

    ADS  CAS  Google Scholar 

  40. Orr, W. L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation; study of Big Horn Basin Paleozoic oils, advances in petroleum geochemistry. Bull. Am. Assoc. Petrol. Geol. 58, 2295–2318 (1974).

    Google Scholar 

  41. Krouse, H. R., Viau, C. A., Eliuk, L. S., Ueda, A. & Halas, S. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333, 415–419 (1988).

    ADS  CAS  Google Scholar 

  42. Machel, H. G., Krouse, H. R., Riciputi, L. R. & Cole, D. R. in Geochemical Transformations of Sedimentary Sulfur (eds Vairavamurthy, M. A. & Schoonen, M. A. A.) 439–454 (Am. Chem. Soc., Washington DC, 1995).

    Google Scholar 

  43. Worden, R. H., Smalley, P. C. & Oxtoby, N. H. Gas souring by thermochemical sulfate reduction at 140°C. Bull. Am. Assoc. Petrol. Geol. 79, 854–863 (1995).

    CAS  Google Scholar 

  44. Machel, H. G. Gas souring by thermochemical sulfate reduction at 140°C: Discussion. Bull. Am. Assoc. Petrol. Geol. 82, 1870–1873 (1998).

    CAS  Google Scholar 

  45. Sassen, R. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction, in the deep Smackover Formation. Org. Geochem. 12, 351–361 (1988).

    CAS  Google Scholar 

  46. Claypool, G. E. & Mancini, E. A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama. Bull. Am. Assoc. Petrol. Geol. 73, 904–924 (1989).

    CAS  Google Scholar 

  47. Manzano, B. K., Fowler, M. G. & Machel, H. G. The influence of thermochemical sulfate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau River area, Alberta, Canada. Org. Geochem. 27, 507–521 (1997).

    CAS  Google Scholar 

  48. Toland, W. G., Hagman, D. L., Wilkes, J. B. & Brutschy, F. J. Oxidation of organic compounds with aqueous base and sulfur. J. Am. Chem. Soc. 80, 5423–5427 (1958).

    CAS  Google Scholar 

  49. Toland, W. G. Oxidation of organic compounds with aqueous sulfate. J. Am. Chem. Soc. 82, 1911–1916 (1960).

    Google Scholar 

  50. Goldhaber, M. B. & Orr, W. L. in Geochemical Transformations of Sedimentary Sulfur (eds Vairavamurthy, M. A. & Schoonen, M. A. A.) 412–425 (Am. Chem. Soc., Washington, DC, 1995).

    Google Scholar 

  51. Bell, J. L. S. & Palmer, D. A. in Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D.) 227–269 (Springer, New York, 1994).

    Google Scholar 

  52. McCollom, T. S. & Seewald, J. S. Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic Acid and formate. Geochim. Cosmochim. Acta 67, 3625–3644 (2003).

    ADS  CAS  Google Scholar 

  53. McCollom, T. S. & Seewald, J. S. Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid. Geochim. Cosmochim. Acta 67, 3645–3664 (2003).

    ADS  CAS  Google Scholar 

  54. Eglinton, T. I., Curtis, C. D. & Rowland, S. J. Generation of water-soluble organic acids from kerogen during hydrous pyrolysis: implications for porosity development. Mineral Mag. 51, 495–503 (1987).

    CAS  Google Scholar 

  55. Borgund, A. E. & Barth, T. Generation of short-chain organic acids from crude oil by hydrous pyrolysis. Org. Geochem. 21, 943–952 (1994).

    CAS  Google Scholar 

  56. Surdam, R. C. & Crossey, L. J. Organic-inorganic reactions during progressive burial: key to porosity and permeability enhancement and preservation. Phil. Trans. R. Soc. Lond. 315, 135–156 (1985).

    ADS  CAS  Google Scholar 

  57. Surdam, R. C., Jiao, Z. S. & MacGowan, D. B. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones. Bull. Am. Assoc. Petrol. Geol. 77, 1509–1518 (1993).

    CAS  Google Scholar 

  58. Franks, S. G. & Forester, R. W. in Clastic Diagenesis (eds McDonald, D. A. & Surdam, R. C.). 63–80 (Am. Assoc. Petrol. Geol., Tulsa, 1984).

    Google Scholar 

  59. Schmidt, V. & MacDonald, D. A. in Aspects of Diagenesis. (eds Scholle, P. A. & Schluger, P. R.) 175–207 (Soc. Econ. Paleontol. Min., Tulsa, 1979).

    Google Scholar 

  60. Surdam, R. C., Crossey, L. J., Hagen, E. S. & Heasler, H. P. Organic-inorganic interactions and sandstone diagenesis. Bull. Am. Assoc. Petrol. Geol. 73, 1–23 (1989).

    CAS  Google Scholar 

  61. Crossey, L. J., Surdam, R. C. & Lahann, R. in Roles of Organic Matter in Sediment Diagenesis (ed. Gautier, D.) 147–155 (Soc. Econ. Paleont. Min., Tulsa, 1986).

    Google Scholar 

  62. Lundegard, P. D., Land, L. S. & Galloway, W. E. Problem of secondary porosity: Frio Formation (Oligocene), Texas Gulf Coast. Geology 12, 399–402 (1984).

    ADS  CAS  Google Scholar 

  63. Lundegard, P. D. & Land, L. S. in Roles of Organic Matter in Sediment Diagenesis (ed. Gautier, D. L.) 129–146 (Soc. Econ. Paleont. Min., Tulsa, 1986).

    Google Scholar 

  64. Pittman, E. D. & Hathon, L. A. in Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D.) 115–137 (Springer, New York, 1994).

    Google Scholar 

  65. Giles, M. R., de Boer, R. B. & Marshall, J. D. in Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D.) 449–470 (Springer, New York, 1994).

    Google Scholar 

  66. Price, L. C. & DeWitt, E. Evidence and characteristics of hydrolytic disproportionation of organic matter during metasomatic processes. Geochim. Cosmochim. Acta 65, 3791–3826 (2001).

    ADS  CAS  Google Scholar 

  67. Hutcheon, I., Shevalier, M. & Abercrombie, H. J. pH buffering by metastable mineral-fluid equilibria and evolution of carbon dioxide fugacity during burial diagenesis. Geochim. Cosmochim. Acta 57, 1017–1027 (1993).

    ADS  CAS  Google Scholar 

  68. Barker, C. Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs. Bull. Am. Assoc. Petrol. Geol. 74, 1254–1261 (1990).

    CAS  Google Scholar 

  69. Ungerer, P. State of the art research in kinetic modeling of oil formation and expulsion. Org. Geochem. 16, 1–25 (1990).

    CAS  Google Scholar 

  70. Mango, F. D., Hightower, J. W. & James, A. T. Catalysis in the origin of natural gas. Nature 368, 536–538 (1994).

    ADS  CAS  Google Scholar 

  71. Mango, F. D. The light hydrocarbons in petroleum: a critical review. Org. Geochem. 26, 417–440 (1997).

    CAS  Google Scholar 

  72. McNeil, R. I. & BeMent, W. O. Thermal stability of hydrocarbons: laboratory criteria and field examples. Energy Fuels 10, 60–67 (1996).

    CAS  Google Scholar 

  73. Sugisaki, R. & Mimura, K. Mantle hydrocarbons: Abiotic or biotic? Geochim. Cosmochim. Acta 58, 2527–2542 (1994).

    ADS  CAS  PubMed  Google Scholar 

  74. Price, L. C. & Schoell, M. Constraints on the origins of hydrocarbon gas from compositions of gases at their site of origin. Nature 378, 368–371 (1995).

    ADS  CAS  PubMed  Google Scholar 

  75. Mango, F. D. The origin of light hydrocarbons. Geochim. Cosmochim. Acta. 64, 1265–1277 (2000).

    ADS  CAS  Google Scholar 

  76. Laidler, K. J., Sagert, N. H. & Wojciechowske, B. W. Kinetics and mechanisms of the thermal decomposition of propane. Proc. R. Soc. Lond. 270, 242–253 (1962).

    ADS  CAS  Google Scholar 

  77. Jenden, P. D., Kaplan, I. R., Poreda, R. J. & Craig, H. Origin of nitrogen-rich natural gases in the California Great Valley; evidence from helium, carbon and nitrogen isotope ratios. Geochim. Cosmochim. Acta 52, 851–861 (1988).

    ADS  CAS  Google Scholar 

  78. Jenden, P. D., Newell, K. D., Kaplan, I. R. & Watney, W. L. Composition and stable-isotope geochemistry of natural gases from Kansas, midcontinent, U.S.A. Chem. Geol. 71, 117–147 (1988).

    ADS  CAS  Google Scholar 

  79. Smith, J. T. & Ehrenberg, S. N. Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: relationship to inorganic chemical equilibrium. Mar.Petrol. Geol. 6, 129–135 (1989).

    CAS  Google Scholar 

  80. Hutcheon, I. & Abercrombie, H. Carbon dioxide in clastic rocks and silicate hydrolysis. Geology 18, 541–544 (1990).

    ADS  Google Scholar 

  81. Cooles, G. P., Mackenzie, A. S. & Quigley, T. M. Calculation of petroleum masses generated and expelled from source rocks. Org. Geochem. 10, 325–345 (1986).

    Google Scholar 

  82. Shock, E. L. Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D) 270–318 (Springer, New York, 1994).

    Google Scholar 

  83. O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51, 5547–5558 (1969).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seewald, J. Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature 426, 327–333 (2003). https://doi.org/10.1038/nature02132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02132

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing