Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-latitude controls of thermocline nutrients and low latitude biological productivity

A Corrigendum to this article was published on 19 October 2011

Abstract

The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean1 and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere2,3 and North Atlantic Ocean3, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides4, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polar stereographic maps of upper ocean nutrients and physics.
Figure 2: Global maps of nutrient properties mapped on the potential density surface σθ = 26.80.
Figure 3: Predicted global zonal mean of the fractional contribution of Southern Ocean nutrient supply to global export production.
Figure 4: Southern Ocean control on thermocline nutrient concentrations.

Similar content being viewed by others

References

  1. Toggweiler, J. R. & Samuels, B. in The Global Carbon Cycle (ed. Heimann, M.) 333–366 (Springer, Berlin, 1993)

    Book  Google Scholar 

  2. McCartney, M. S. The subtropical recirculation of mode waters. J. Mar. Res. 40 (suppl.), 427–464 (1982)

    Google Scholar 

  3. Sloyan, B. M. & Rintoul, S. R. Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr. 31, 1005–1030 (2001)

    Article  ADS  Google Scholar 

  4. Talley, L. D. An Okhotsk Sea water anomaly: Implications for ventilation in the North Pacific. Deep-Sea Res. 38 (suppl. 1), S171–S190 (1991)

    Article  ADS  Google Scholar 

  5. Ledwell, J. R., Watson, A. J. & Law, C. S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364, 701–703 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Toggweiler, J. R., Dixon, K. & Broecker, W. S. The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res. 96, 20467–20497 (1991)

    Article  ADS  CAS  Google Scholar 

  7. McCartney, M. S. in A Voyage of Discovery (ed. Angel, M. V.) 103–119 (Supplement to Deep-Sea Research, George Deacon 70th Anniversary Volume, Pergamon, Oxford, 1977)

    Google Scholar 

  8. Hanawa, K. & Talley, L. D. in Ocean Circulation and Climate (eds Siedler, G. & Church, J.) 373–386 (Academic, San Diego, 2001)

    Google Scholar 

  9. Ragueneau, O. et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob. Planet. Change 26, 317–365 (2000)

    Article  ADS  Google Scholar 

  10. Tsunogai, S. The Western North Pacific playing a key role in global biogeochemical cycles. J. Oceanogr. 58, 245–257 (2002)

    Article  CAS  Google Scholar 

  11. Reid, J. L. On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers, and transport. Prog. Oceanog. 29, 263–352 (1997)

    Article  Google Scholar 

  12. Talley, L. D. North Pacific Intermediate Water transports in the mixed water region. J. Phys. Oceanogr. 27, 1795–1803 (1997)

    Article  ADS  Google Scholar 

  13. Yasuda, I., Kouketsu, S., Katsumata, K. & Ohiwa, M. Influence of Okhotsk Sea Intermediate Water on the Oyashio and North Pacific Intermediate Water. J. Geophys. Res. 107, doi:10.1029/2001JC001037 (2002)

    Article  ADS  Google Scholar 

  14. Nakamura, T. et al. The generation of large-amplitude unsteady lee waves by subinertial K1 tidal flow: A possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr. 30, 1601–1621 (2000)

    Article  ADS  Google Scholar 

  15. Yasuda, I. et al. Hydrographic structure and transport of the Oyashio south of Hokkaido and the formation of North Pacific Intermediate Water. J. Geophys. Res. 106, 6931–6942 (2001)

    Article  ADS  Google Scholar 

  16. Dugdale, R. C. et al. Meridional asymmetry of source nutrients to the equatorial Pacific upwelling ecosystem and its potential impact on ocean-atmosphere CO2 flux; a data and modeling approach. Deep-Sea Res. II 49, 2513–2531 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Gnanadesikan, A., Slater, R. D., Gruber, N. & Sarmiento, J. L. Oceanic vertical exchange and new production: A comparison between models and observations. Deep-Sea Res. II 49, 363–401 (2002)

    Article  ADS  Google Scholar 

  18. Sigman, D. M., Altabet, M. A., McCorkle, D. C., Francois, R. & Fischer, G. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. Glob. Biogeochem. Cycles 13, 1149–1166 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Franck, V. M., Brzezinski, M. A., Coale, K. H. & Nelson, D. M. Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Res. II 47, 3315–3338 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Brzezinski, M. A., Dickson, M.-L., Nelson, D. M. & Sambrotto, R. Ratios of Si, C and N uptake by microplankton in the Southern Ocean. Deep-Sea Res. II 50, 619–633 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Pollard, R. T., Lucas, M. I. & Read, J. F. Physical controls on biogeochemical zonation in the Southern Ocean. Deep-Sea Res. II 49, 3289–3305 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon Cell. J. Phys. Oceanogr. 30, 3212–3222 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Sarmiento, J. L. et al. A new estimate of the CaCO3 to organic carbon export ratio. Glob. Biogeochem. Cycles 16, doi:1029/2002GB00191 (2002)

  26. Moore, J. K., Abbott, M. R. & Richman, J. G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res. 104, 3059–3073 (1999)

    Article  ADS  Google Scholar 

  27. Belkin, I. M. & Gordon, A. L. Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res. 101, 3675–3696 (1996)

    Article  ADS  Google Scholar 

  28. Levitus, S. et al. World Ocean Database 1998 Vol. 1, Introduction (NOAA NESDIS, Washington DC, 1998)

    Google Scholar 

  29. Kara, A. B., Rochford, P. A. & Hurlburt, H. E. Mixed layer depth variability over the global ocean. J. Geophys. Res. 108, doi:10.1029/2000C000736 (2003)

  30. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Belkin and K. Moore for making their frontal paths in the Southern Ocean available to us. This paper benefited from comments by M. Bender, B. McNeil, D. Sigman, C. Sweeney and R. Toggweiler. J.L.S. was supported by a NOAA Office of Global Programs grant to the Carbon Modeling Consortium for model development, and by an NSF grant for model and observational interpretations as part of the JGOFS Synthesis and Modeling Project. J.L.S. and J.D. were supported by a DOE Office of Science grant for the nutrient depletion scenarios. N.G. was supported by the DOE, and M.A.B. by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Sarmiento.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmiento, J., Gruber, N., Brzezinski, M. et al. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004). https://doi.org/10.1038/nature02127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing