Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain

Abstract

RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs1,2. The RNase III-like enzyme Dicer first cleaves dsRNA into 21–23-nucleotide small interfering RNAs (siRNAs)3,4,5,6. In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation3,7. The Argonaute 2 protein (Ago2) is a critical component of RISC8,9. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown10. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central β-barrel and a conserved module comprising strands β3, β4 and helix α3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Ago2 PAZ domain from D. melanogaster.
Figure 2: Nucleic-acid-binding surface of the Ago2 PAZ domain.
Figure 3: Nucleic-acid binding activity of the Ago2 PAZ domain.

Similar content being viewed by others

References

  1. Denli, A. M. & Hannon, G. J. RNAi: an ever-growing puzzle. Trends Biochem. Sci. 28, 196–201 (2003)

    Article  CAS  Google Scholar 

  2. Hutvagner, G. & Zamore, P. D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232 (2002)

    Article  CAS  Google Scholar 

  3. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000)

    Article  CAS  Google Scholar 

  5. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001)

    Article  CAS  Google Scholar 

  7. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001)

    Article  CAS  Google Scholar 

  8. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001)

    Article  CAS  Google Scholar 

  9. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002)

    Article  CAS  Google Scholar 

  10. Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 25, 481–482 (2000)

    Article  CAS  Google Scholar 

  11. Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells 6, 313–325 (2001)

    Article  CAS  Google Scholar 

  12. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002)

    Article  CAS  Google Scholar 

  13. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999)

    Article  CAS  Google Scholar 

  14. Theobald, D. L., Mitton-Fry, R. M. & Wuttke, D. S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003)

    Article  CAS  Google Scholar 

  15. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature advance online publication, 16 November 2003 (doi:10.1038/nature02129)

  17. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002)

    Article  CAS  Google Scholar 

  18. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001)

    Article  CAS  Google Scholar 

  19. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX Pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  20. Johnson, B. A. & Blevins, R. A. NMRView: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994)

    Article  CAS  Google Scholar 

  21. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spectrosc. 34, 93–158 (1999)

    Article  CAS  Google Scholar 

  22. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    Article  CAS  Google Scholar 

  23. Linge, J. P., O'Donoghue, S. I. & Nilges, M. Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol. 339, 71–90 (2001)

    Article  CAS  Google Scholar 

  24. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  25. Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003)

    Article  CAS  Google Scholar 

  26. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA ROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996)

    Article  CAS  Google Scholar 

  27. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996)

    Article  CAS  Google Scholar 

  28. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Protein Struct. Funct. Genet. 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  29. Grüter, P. et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659 (1998)

    Article  Google Scholar 

  30. Bogden, C. E., Fass, D., Bergman, N., Nichols, M. D. & Berger, J. M. The structural basis for terminator recognition by the Rho transcription termination factor. Mol. Cell 3, 487–493 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ladurner, E. Conti and R. Russell for discussions; G. Stier and S. Bäckström for the pETM60 vector; M. Rode for technical support; F. Ciccarreli and P. Bork for help with sequence alignments; and the NMR centre in Frankfurt, Germany for NMR measurement time. This study was supported by the European Molecular Biology Organization (EMBO), the German Research Foundation (DFG), and the Human Frontier Science Program Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sattler.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingel, A., Simon, B., Izaurralde, E. et al. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003). https://doi.org/10.1038/nature02123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02123

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing