Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extinction risk from climate change

Abstract

Climate change over the past 30 years has produced numerous shifts in the distributions and abundances of species1,2 and has been implicated in one species-level extinction3. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15–37% of species in our sample of regions and taxa will be ‘committed to extinction’. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction (18%) than mid-range (24%) and maximum-change (35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Pounds, J. A., Fogden, M. L. P. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Overpeck, J., Whitlock, C. & Huntley, B. in Paleoclimate, Global Change and the Future (eds Alverson, K., Bradley, R. & Pedersen, T.) 81–103 (Springer, Berlin, 2002)

    Google Scholar 

  5. Benton, M. J. & Twitchett, R. J. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18, 358–365 (2003)

    Article  Google Scholar 

  6. Houghton, J. T. et al. Climate change 2001: the Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2001)

    Google Scholar 

  7. Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R. & Latour, J. B. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol. 8, 390–407 (2002)

    Article  ADS  Google Scholar 

  8. Beaumont, L. J. & Hughes, L. Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biol. 8, 954–971 (2002)

    Article  ADS  Google Scholar 

  9. Erasmus, B. F. N., van Jaarsveld, A. S., Chown, S. L., Kshatriya, M. & Wessels, K. Vulnerability of South African animal taxa to climate change. Global Change Biol. 8, 679–693 (2002)

    Article  ADS  Google Scholar 

  10. Midgley, G. F., Hannah, L., Rutherford, M. C. & Powrie, L. W. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecol. Biogeogr. 11, 445–451 (2002)

    Article  Google Scholar 

  11. Peterson, A. T. et al. Future projections for Mexican faunas under global climate change scenarios. Nature 416, 626–629 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. Lond. B 270, 1887–1892 (2003)

    Article  Google Scholar 

  13. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995)

    Book  Google Scholar 

  14. Brooks, T. M., Pimm, S. L. & Oyugi, J. O. Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13, 1140–1150 (1999)

    Article  Google Scholar 

  15. Brooks, T. M., Pimm, S. L. & Collar, N. J. Deforestation predicts the number of threatened birds in insular Southeast Asia. Conserv. Biol. 11, 382–394 (1997)

    Article  Google Scholar 

  16. IUCN Red List Categories and Criteria, version 3.1. (IUCN Species Survival Commission, Gland, Switzerland, 2001).

  17. Gaston, K. J., Blackburn, T. M. & Goldewijk, K. K. Habitat conversion and global avian biodiversity loss. Proc. R. Soc. Lond. B 270, 1293–1300 (2003)

    Article  Google Scholar 

  18. Achard, F. et al. Determination of deforestation rates of the world's humid tropical forests. Science 297, 999–1002 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Roget, M., Richardson, D. M., Cowling, R. M., Lloyd, J. W. & Lombard, A. T. Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa. Biol. Conserv. 112, 63–85 (2003)

    Article  Google Scholar 

  21. Woodward, F. I. Potential impacts of global elevated CO2 concentrations on plants. Curr. Opin. Plant Biol. 5, 207–211 (2002)

    Article  CAS  Google Scholar 

  22. Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biol. 9, 973–982 (2003)

    Article  ADS  Google Scholar 

  23. Whittaker, J. B. Impacts and responses at population level of herbivorous insects to elevated CO2 . Eur. J. Entomol. 96, 149–156 (1999)

    Google Scholar 

  24. Sala, O. E. et al. Biodiversity—global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000)

    Article  CAS  Google Scholar 

  25. Lackner, K. S. A guide to CO2 sequestration. Science 300, 1677–1678 (2003)

    Article  CAS  Google Scholar 

  26. Beerling, D. J. The impact of temperature on the northern distribution limits of the introduced species Fallopia japonica and Impatiens glandulifera in north-west Europe. J. Biogeog. 20, 45–53 (1993)

    Article  Google Scholar 

  27. Baker, R. H. A. et al. The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric. Ecosyst. Environ. 82, 57–71 (2000)

    Article  Google Scholar 

  28. Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling. BioScience 51, 363–371 (2001)

    Article  Google Scholar 

  29. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeog. 12, 361–371 (2003)

    Article  Google Scholar 

  30. Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis. http://www.grida.no/climate/ipcc_tar/wg1/figts-22.htm (2001).

Download references

Acknowledgements

We thank the following for many contributions: E. Bolitho, V. Perez Canhos, D. A. L. Canhos, S. Carver, S. L. Chown, S. Fox, M. Kshatriya, D. Millar, A. G. Navarro-Sigüenza, R. S. Pereira, B. Reyers, E. Martínez-Meyer, V. Sánchez-Cordero, J. Soberón, D. R. B. Stockwell, W. Thuiller, D. A. Vieglais and K. J. Wessels, researchers involved in the Projeto de Cooperação Técnica Conservação e Manejo da Biodiversidade do Bioma Cerrado, EMBRAPA Cerrados, UnB, Ibama/DFID e RBGE/Reino Unido, and the European Bird Census Council. We thank G. Mace, J. Malcolm and C. Parmesan for valuable discussions, many funding agencies for support, and B. Orlando and others at IUCN for bringing together many of the coauthors at workshops. Comments from J. A. Pounds and S. Pimm greatly improved the manuscript.Authors' contributions The fourth and subsequent authors are alphabetically arranged and contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Thomas.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2004_BFnature02121_MOESM1_ESM.doc

Supplementary Information: This file contains supplementary information on: a) modelling techniques and climate models used in each study; b) extinction estimates based on various z values, using the species-area approach; c) dealing with expanding species; d) Red Data Book (RDB) classifications and e) supplementary references. (DOC 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, C., Cameron, A., Green, R. et al. Extinction risk from climate change. Nature 427, 145–148 (2004). https://doi.org/10.1038/nature02121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02121

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing