Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation


The human oncogene β-catenin is a bifunctional protein with critical roles in both cell adhesion and transcriptional regulation in the Wnt pathway1,2,3. Wnt/β-catenin signalling has been implicated in developmental processes as diverse as elaboration of embryonic polarity2,3,4,5,6, formation of germ layers4,5,6,7,8, neural patterning, spindle orientation and gap junction communication2, but the ancestral function of β-catenin remains unclear. In many animal embryos, activation of β-catenin signalling occurs in blastomeres that mark the site of gastrulation and endomesoderm formation5,6,7,8,9,10, raising the possibility that asymmetric activation of β-catenin signalling specified embryonic polarity and segregated germ layers in the common ancestor of bilaterally symmetrical animals. To test whether nuclear translocation of β-catenin is involved in axial identity and/or germ layer formation in ‘pre-bilaterians’, we examined the in vivo distribution, stability and function of β-catenin protein in embryos of the sea anemone Nematostella vectensis (Cnidaria, Anthozoa). Here we show that N. vectensis β-catenin is differentially stabilized along the oral–aboral axis, translocated into nuclei in cells at the site of gastrulation and used to specify entoderm, indicating an evolutionarily ancient role for this protein in early pattern formation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lithium chloride treatment of N. vectensis embryos results in the hyperproliferation of entoderm at gastrulation.
Figure 2: The temporal and spatial dynamics of β-catenin–GFP protein in live N. vectensis embryos. mRNA coding for the fusion protein (green) was co-injected with rhodamine dextran (red) into zygotes.
Figure 3: Immunohistochemical localization of endogenous N. vectensis β-catenin.
Figure 4: Blocking the nuclear function of β-catenin inhibits entoderm formation in N. vectensis.


  1. Miller, J. R. & Moon, R. T. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996)

    CAS  Article  Google Scholar 

  2. Huelsken, J. & Birchmeier, W. New aspects of Wnt signalling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001)

    CAS  Article  Google Scholar 

  3. Polakis, P. Wnt signalling and cancer. Genes Dev. 14, 1837–1851 (2000)

    CAS  PubMed  Google Scholar 

  4. Wikramanayake, A. H., Huang, L. & Klein, W. H. beta-catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc. Natl Acad. Sci. USA 95, 9343–9348 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Logan, C. Y., Miller, J. R., Ferkowicz, M. J. & McClay, D. R. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126, 345–357 (1999)

    CAS  Google Scholar 

  6. Imai, K., Takada, N., Satoh, N. & Satou, Y. Beta-catenin mediates the specification of endoderm cells in ascidian embryos. Development 127, 3009–3020 (2000)

    CAS  Google Scholar 

  7. Thorpe, C. H., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signalling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997)

    CAS  Article  Google Scholar 

  8. Rocheleau, C. E. et al. Wnt signalling and an APC related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997)

    CAS  Article  Google Scholar 

  9. Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. Beta-catenin translocation into nuclei demarcates the dorsalizing centres in frog and fish embryos. Mech. Dev. 57, 191–198 (1996)

    CAS  Article  Google Scholar 

  10. Miyawaki, K. et al. Nuclear localization of beta-catenin in vegetal pole cells during early embryogenesis of the starfish Asterina pectinifera. Dev. Growth Differ. 45, 121–128 (2003)

    CAS  Article  Google Scholar 

  11. Medina, M., Collins, A. G., Silberman, J. D. & Sogin, M. L. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc. Natl Acad. Sci. USA 98, 9707–9712 (2001)

    ADS  CAS  Article  Google Scholar 

  12. Collins, A. G. Evaluating multiple alternative hypothesis for the origin of Bilateria: An analysis of 18S rRNA molecular evidence. Proc. Natl Acad. Sci. USA 95, 15458–15463 (1998)

    ADS  CAS  Article  Google Scholar 

  13. Hand, C. & Uhlinger, K. R. The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol. Bull. 182, 169–176 (1992)

    CAS  Article  Google Scholar 

  14. Goldstein, B. & Freeman, G. Axis specification in animal development. Bioessays 19, 105–116 (1997)

    CAS  Article  Google Scholar 

  15. Knoll, A. & Carroll, S. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999)

    CAS  Article  Google Scholar 

  16. Hobmayer, B. et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189 (2000)

    ADS  CAS  Article  Google Scholar 

  17. Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996)

    ADS  CAS  Article  Google Scholar 

  18. Kao, K. R. & Elinson, R. P. The legacy of lithium effects on development. Biol. Cell 90, 585–590 (1998)

    CAS  Article  Google Scholar 

  19. Schneider, S. Q., Finnerty, J. R. & Martindale, M. Q. Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of multicellular animals. J. Exp. Zool. B 295, 25–44 (2003)

    Article  Google Scholar 

  20. Miller, J. R. & Moon, R. T. Analysis of the signalling activities of localization mutants of beta-catenin during axis specification in Xenopus. J. Cell Biol. 139, 229–243 (1997)

    CAS  Article  Google Scholar 

  21. Weitzel, H. E. & Ettensohn, C. A. beta-catenin is differentially degraded along the animal-vegetal axis of early sea urchin embryos in a GSK-3b-dependent manner. Dev. Biol. 247, 479a (2002)

    Google Scholar 

  22. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996)

    CAS  Article  Google Scholar 

  23. Ding, Y. & Dale, T. Wnt signal transduction: kinase cogs in a nano-machine? Trends Biochem. Sci. 27, 327–329 (2002)

    CAS  Article  Google Scholar 

  24. Heasman, J. et al. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 (1994)

    CAS  Article  Google Scholar 

  25. Montross, W. T., Ji, H. & McCrea, P. D. A beta-catenin/engrailed chimera selectively suppresses Wnt signalling. J. Cell Sci. 113, 1759–1770 (2000)

    CAS  Google Scholar 

  26. Freeman, G. & Miller, R. L. Hydrozoan eggs can only be fertilized at the site of polar body formation. Dev. Biol. 94, 142–152 (1982)

    CAS  Article  Google Scholar 

  27. Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signalling pathway. J. Cell Biol. 136, 1123–1136 (1997)

    CAS  Article  Google Scholar 

  28. Mao, C.-A. et al. Altering cell fates in sea urchin embryos by overexpressing SpOtx, an orthodenticle-related protein. Development 122, 1489–1498 (1996)

    CAS  Google Scholar 

  29. Klymkowsky, M. W. & Hanken, J. Whole-mount staining of Xenopus and other vertebrates. Methods Cell Biol. 36, 419–441 (1991)

    CAS  Article  Google Scholar 

  30. McCrea, P. D., Brieher, W. M. & Gumbiner, B. M. Induction of a secondary body axis in Xenopus by antibodies to beta-catenin. J. Cell Biol. 123, 477–484 (1993)

    CAS  Article  Google Scholar 

Download references


We thank Y. Marikawa, B. Klein and members of our laboratories for critical reading of the manuscript and for suggestions and P. McCrea for the gift of affinity-purified β-catenin antibody. This work was supported by grants from the NSF and the Hawaii Community Foundation to A.H.W. and by grants from the NSF and NASA to M.Q.M.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Athula H. Wikramanayake or Mark Q. Martindale.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wikramanayake, A., Hong, M., Lee, P. et al. An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation. Nature 426, 446–450 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing