Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The transcription factor Eyes absent is a protein tyrosine phosphatase

Abstract

Post-translational modifications provide sensitive and flexible mechanisms to dynamically modulate protein function in response to specific signalling inputs1. In the case of transcription factors, changes in phosphorylation state can influence protein stability, conformation, subcellular localization, cofactor interactions, transactivation potential and transcriptional output1. Here we show that the evolutionarily conserved transcription factor Eyes absent (Eya)2,3 belongs to the phosphatase subgroup of the haloacid dehalogenase (HAD) superfamily4,5, and propose a function for it as a non-thiol-based protein tyrosine phosphatase. Experiments performed in cultured Drosophila cells and in vitro indicate that Eyes absent has intrinsic protein tyrosine phosphatase activity and can autocatalytically dephosphorylate itself. Confirming the biological significance of this function, mutations that disrupt the phosphatase active site severely compromise the ability of Eyes absent to promote eye specification and development in Drosophila. Given the functional importance of phosphorylation-dependent modulation of transcription factor activity, this evidence for a nuclear transcriptional coactivator with intrinsic phosphatase activity suggests an unanticipated method of fine-tuning transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eya is a member of the phosphatase subgroup of the HAD superfamily.
Figure 2: Eya exhibits phosphatase activity in vitro.
Figure 3: EyaHAD mutants have severely reduced activity relative to EyaWT in ectopic-eye-induction and genetic rescue assays.
Figure 4: EyaHAD mutations do not disrupt the role of Eya as a transcriptional coactivator in conjunction with So.
Figure 5: Eya has protein tyrosine phosphatase activity.

Similar content being viewed by others

References

  1. Hunter, T. Signaling—2000 and beyond. Cell 100, 113–127 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Treisman, J. E. A conserved blueprint for the eye? Bioessays 21, 843–850 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Wawersik, S & Maas, R. L. Vertebrate eye development as modeled in Drosophila. Hum. Mol. Genet. 9, 917–925 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Collet, J. F., van Schaftingen, E. & Stroobant, V. A new family of phosphotransferases related to P-type ATPases. Trends Biochem. Sci. 23, 284 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Thaller, M. C., Schippa, S. & Rossolini, G. M. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci. 7, 1647–1652 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonini, N. M., Bui, Q. T., Gray-Board, G. L. & Warrick, J. M. The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124, 4819–4826 (1997)

    CAS  PubMed  Google Scholar 

  7. Pignoni, F. et al. The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91, 881–891 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Chen, R., Amoui, M., Zhang, Z. & Mardon, G. Dachshund and Eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91, 893–903 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Silver, S. J., Davies, E. L., Doyon, L. & Rebay, I. A functional dissection of Eyes absent reveals new modes of regulation within the retinal determination gene network. Mol. Cell. Biol. 23, 5989–5999 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, S. S. et al. Structure of the retinal determination protein Dachshund reveals a DNA binding motif. Structure (Camb.) 10, 787–795 (2002)

    Article  CAS  Google Scholar 

  11. Ikeda, K., Watanabe, Y., Ohto, H. & Kawakami, K. Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein. Mol. Cell. Biol. 22, 6759–6766 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bui, Q. T., Zimmerman, J. E., Liu, H. & Bonini, N. M. Molecular analysis of Drosophila eyes absent mutants reveals features of the conserved Eya domain. Genetics 155, 709–720 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collet, J. F., Stroobant, V. & Van Schaftingen, E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J. Biol. Chem. 274, 33985–33990 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Aravind, L., Galperin, M. Y. & Koonin, E. V. The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem. Sci. 23, 127–129 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Selengut, J. D. Mdp-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. Biochemistry 40, 12704–12711 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Ridder, I. & Dijkstra, B. Identification of the Mg2+ -binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochem. J. 339, 223–226 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho, H. et al. Beryllium fluoride acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a beryllium fluoride complex with phosphoserine phosphatase. Proc. Natl Acad. Sci. USA 98, 8525–8530 (2001)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  18. Selengut, J. D. & Levine, R. L. MDP-1: A novel eukaryotic magnesium-dependent phosphatase. Biochemistry 39, 8315–8324 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Andersen, J. N. et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21, 7117–7136 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsiao, F. C., Williams, A., Davies, E. L. & Rebay, I. Eyes absent mediates cross-talk between retinal determination genes and the receptor tyrosine kinase signaling pathway. Dev. Cell 1, 51–61 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Tootle, T. L., Lee, P. S. & Rebay, I. CRM1-mediated nuclear export and regulated activity of the receptor tyrosine kinase antagonist YAN require specific interactions with MAE. Development 130, 845–857 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Cohen, J., Altaratz, H., Zick, Y., Klingmuller, U. & Neumann, D. Phosphorylation of erythropoietin receptors in the endoplasmic reticulum by pervanadate-mediated inhibition of tyrosine phosphatases. Biochem. J. 327, 391–397 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Imbert, V. et al. Induction of tyrosine phosphorylation and T-cell activation by vanadate peroxide, an inhibitor of protein tyrosine phosphatases. Biochem. J. 297, 163–173 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruff, S. J., Chen, K. & Cohen, S. Peroxovanadate induces tyrosine phosphorylation of multiple signaling proteins in mouse liver and kidney. J. Biol. Chem. 272, 1263–1267 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. Scanga, S. E. et al. The conserved PI3K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19, 3971–3977 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. Aravind, L. & Koonin, E. V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Voas, D. Doroquez, L. Doyon and B. Chaffee for technical assistance, J. Flynn, S. Neher and S. Flaugh for advice, reagents and technical help, D. Maas for murine Eya complementary DNAs, the Rebay lab for advice and discussions, F. Pignoni for the eya2 stocks used in the rescue assay, and R. Hegde for sharing unpublished information. We are grateful for advice, comments and encouragement from R. Fehon, G. Fink, T. Orr-Weaver, S. Shenolikar, F. Solomon and J. York. T.L.T., S.J.S., I.A.M. and B.E.W.P. are supported by the Ludwig Foundation, the Howard Hughes Medical Institute, the Packard Foundation and the National Science Foundation, respectively. I.R. is supported by the National Eye Institute and the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Rebay.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tootle, T., Silver, S., Davies, E. et al. The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426, 299–302 (2003). https://doi.org/10.1038/nature02097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing