Hyperelasticity governs dynamic fracture at a critical length scale


The elasticity of a solid can vary depending on its state of deformation. For example, metals will soften and polymers may stiffen as they are deformed to levels approaching failure. It is only when the deformation is infinitesimally small that elastic moduli can be considered constant, and hence the elasticity linear. Yet, many existing theories model fracture using linear elasticity, despite the fact that materials will experience extreme deformations at crack tips. Here we show by large-scale atomistic simulations that the elastic behaviour observed at large strains—hyperelasticity—can play a governing role in the dynamics of fracture, and that linear theory is incapable of fully capturing all fracture phenomena. We introduce the concept of a characteristic length scale for the energy flux near the crack tip, and demonstrate that the local hyperelastic wave speed governs the crack speed when the hyperelastic zone approaches this energy length scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The simulation geometry with the lattice orientation and the weak layer.
Figure 2: Hyperelastic zone and the associated change in energy flow near the crack tip.
Figure 3: Change of crack speed with the onset strain of hyperelasticity.
Figure 4: Intersonic mode I crack motion and supersonic mode II crack motion.
Figure 5: Scaling law for the characteristic length associated with energy transport near the crack tip.


  1. 1

    Freund, L. B. Dynamic Fracture Mechanics 2nd edn (Cambridge Univ. Press, Cambridge, UK, 1998)

    Google Scholar 

  2. 2

    Broberg, B. Cracks and Fracture (Academic, San Diego, 1999)

    Google Scholar 

  3. 3

    Slepyan, L. I. Models and Phenomena in Fracture Mechanics (Springer, Berlin, 2002)

    Google Scholar 

  4. 4

    Fineberg, J., Gross, S. P., Marder, M. & Swinney, H. L. Instability in dynamic fracture. Phys. Rev. Lett. 67, 141–144 (1991)

    Article  Google Scholar 

  5. 5

    Ravi-Chandar, K. Dynamic fracture of nominally brittle materials. Int. J. Fract. 90, 83–102 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Abraham, F. F., Brodbeck, D., Rudge, W. E. & Xu, X. Instability of fracture—a computer-simulation investigation. Phys. Rev. Lett. 73, 272–275 (1994)

    ADS  CAS  PubMed  Article  Google Scholar 

  7. 7

    Abraham, F. F., Brodbeck, D. & Rudge, W. E. A molecular-dynamics investigation of rapid fracture mechanics. J. Mech. Phys. Solids 45, 1595–1619 (1997)

    ADS  CAS  MATH  Article  Google Scholar 

  8. 8

    Falk, M. L., Needleman, A. & Rice, J. R. A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV France 11, 43–50 (2001)

    Article  Google Scholar 

  9. 9

    Washabaugh, P. D. & Knauss, W. G. A reconcilation of dynamic crack velocity and Rayleigh-wave speed in isotropic brittle solids. Int. J. Fract. 65, 97–114 (1994)

    Google Scholar 

  10. 10

    Sharon, E. & Fineberg, J. Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397, 333 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Field, J. E. Brittle fracture—its study and application. Contemp. Phys. 12, 1–31 (1971)

    ADS  Article  Google Scholar 

  12. 12

    Cramer, T., Wanner, A. & Gumbsch, P. Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. Phys. Rev. Lett. 85, 788–791 (2000)

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13

    Hauch, J. A. & Marder, M. P. Energy balance in dynamic fracture, investigated by a potential drop technique. Int. J. Fract. 90 (1–2), 133–151 (1998)

    CAS  Article  Google Scholar 

  14. 14

    Hauch, J. A., Holland, D., Marder, M. P. & Swinney, H. L. Dynamic fracture in single crystal silicon. Phys. Rev. Lett. 82, 3823–3826 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hull, D. & Beardmore, P. Velocity of propagation of cleavage cracks in Tungsten. Int. J. Fract. Mech. 2, 468–488 (1966)

    CAS  Article  Google Scholar 

  16. 16

    Gao, H. A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44, 1453–1474 (1996)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Gao, H. Elastic eaves in a hyperelastic solid near its plane-strain equibiaxial cohesive limit. Phil. Mag. Lett. 76, 307–314 (1997)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Abraham, F. F. Dynamics of brittle fracture with variable elasticity. Phys. Rev. Lett. 77, 272–275 (1996)

    Google Scholar 

  19. 19

    Abraham, F. F.. et al. Instability dynamics in three-dimensional fracture: An atomistic simulation. J. Mech. Phys. Solids 45, 1461–1471 (1997)

    ADS  CAS  MATH  Article  Google Scholar 

  20. 20

    Rountree, C. L. et al. Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular-dynamics simulations. Annu. Rev. Mater. Res. 32, 377–400 (2002)

    CAS  Article  Google Scholar 

  21. 21

    Zhou, S. J., Lomdahl, P. S., Thomson, R. & Holian, B. L. Dynamic crack processes via molecular-dynamics. Phys. Rev. Lett. 76, 2318–2321 (1996)

    ADS  CAS  PubMed  Article  Google Scholar 

  22. 22

    Heizler, S. I., Kessler, D. A. & Levine, H. Mode I fracture in a nonlinear lattice with viscoelastic forces. Phys. Rev. E 66, 016126 (2002)

    ADS  Article  Google Scholar 

  23. 23

    Abraham, F. F et al. Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture. Proc. Natl Acad. Sci. USA 99, 5777–5782 (2002)

    ADS  CAS  PubMed  Article  Google Scholar 

  24. 24

    Swadener, J. G., Baskes, M. I. & Nastasi, M. Molecular dynamics simulation of brittle fracture in silicon. Phys. Rev. Lett. 89, 085503 (2002)

    ADS  CAS  PubMed  Article  Google Scholar 

  25. 25

    Abraham, F. F. The atomic dynamics of fracture. J. Mech. Phys. Solids 49, 2095–2111 (2001)

    ADS  MATH  Article  Google Scholar 

  26. 26

    Fratini, S., Pla, O., Gonzalez, P., Guinea, F. & Louis, E. Energy radiation of moving cracks. Phys. Rev. B 66, 104104 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Abraham, F. F. & Gao, H. How fast can cracks propagate? Phys. Rev. Lett. 84, 3113–3116 (2000)

    ADS  CAS  PubMed  Article  Google Scholar 

  28. 28

    Rosakis, A. J. Intersonic shear cracks and fault ruptures. Adv. Phys. 51, 1189–1257 (2002)

    ADS  Article  Google Scholar 

  29. 29

    Broberg, K. B. Dynamic crack propagation in a layer. Int. J. Sol. Struct. 32 (6–7), 883–896 (1995)

    MATH  Article  Google Scholar 

  30. 30

    Allen, M. & Tildesley, D. Computer Simulation of Liquids (Oxford Univ. Press, 1989)

    Google Scholar 

  31. 31

    Knauss, W. G. Stresses in an infinite strip containing a semi-infinite crack. J. Appl. Mech. 33, 356–362 (1966)

    ADS  Article  Google Scholar 

  32. 32

    Zimmermann, J. Continuum and Atomistic Modeling of Dislocation Nucleation at Crystal Surface Ledges PhD thesis, Stanford Univ. (1999)

    Google Scholar 

Download references


F.F.A. acknowledges the generous support provided by the Humboldt Research Award for Senior US Scientists.

Author information



Corresponding author

Correspondence to Huajian Gao.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buehler, M., Abraham, F. & Gao, H. Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003). https://doi.org/10.1038/nature02096

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing