Regulation of phyllotaxis by polar auxin transport

Abstract

The regular arrangement of leaves around a plant's stem, called phyllotaxis, has for centuries attracted the attention of philosophers, mathematicians and natural scientists; however, to date, studies of phyllotaxis have been largely theoretical. Leaves and flowers are formed from the shoot apical meristem, triggered by the plant hormone auxin. Auxin is transported through plant tissues by specific cellular influx and efflux carrier proteins. Here we show that proteins involved in auxin transport regulate phyllotaxis. Our data indicate that auxin is transported upwards into the meristem through the epidermis and the outermost meristem cell layer. Existing leaf primordia act as sinks, redistributing auxin and creating its heterogeneous distribution in the meristem. Auxin accumulation occurs only at certain minimal distances from existing primordia, defining the position of future primordia. This model for phyllotaxis accounts for its reiterative nature, as well as its regularity and stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Localization of the PIN1 protein in Arabidopsis apices.
Figure 2: Auxin-induced leaf and flower formation and PIN1 expression in mutants of Arabidopsis.
Figure 3: The role of PIN1 in organ separation and delimitation.
Figure 4: Localization and function of AUX1 in the meristem.
Figure 5: Model for the role of polar auxin transport in phyllotaxis.

References

  1. 1

    Steeves, T. A. & Sussex, I. M. Patterns in Plant Development (Cambridge Univ. Press, Cambridge, UK, 1989)

    Google Scholar 

  2. 2

    Reinhardt, D. & Kuhlemeier, C. in Meristematic Tissues in Plant Growth and Development (eds McManus, M. T. & Veit, B. E.) 172–212 (Sheffield Academic, Sheffield, 2002)

    Google Scholar 

  3. 3

    Mitchison, G. J. Phyllotaxis and the Fibonacci series. Science 196, 270–275 (1977)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Jean, R. V. Phyllotaxis: A Systematic Study in Plant Morphogenesis (Cambridge Univ. Press, Cambridge, UK, 1994)

    Google Scholar 

  5. 5

    Snow, M. & Snow, R. A theory of regulation of phyllotaxis based on Lupinus albus. Phil. Trans. R. Soc. Lond. Ser. B 244, 483–513 (1962)

    ADS  Article  Google Scholar 

  6. 6

    Green, P. B. Expression of form and pattern in plants - A role for biophysical fields. Semin. Cell Dev. Biol. 7, 903–911 (1996)

    Article  Google Scholar 

  7. 7

    Schoute, J. C. Beiträge zur Blattstellungslehre. Récueil des Travaux Botaniques Néerlandais 10, 153–325 (1913)

    Google Scholar 

  8. 8

    Meinhardt, H. in Positional Controls in Plant Development (eds Barlow, P. W. & Carr, D. J.) 1–32 (Cambridge University Press, Cambridge, UK, 1984)

    Google Scholar 

  9. 9

    Liu, C.-M., Xu, Z.-H. & Chua, N.-H. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5, 621–630 (1993)

    CAS  Article  Google Scholar 

  10. 10

    Hadfi, K., Speth, V. & Neuhaus, G. Auxin-induced developmental patterns in Brassica juncea embryos. Development 125, 879–887 (1998)

    CAS  PubMed  Google Scholar 

  11. 11

    Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998)

    CAS  Article  Google Scholar 

  12. 12

    Aida, M., Vernoux, T., Furutani, M., Traas, J. & Tasaka, M. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129, 3965–3974 (2002)

    CAS  PubMed  Google Scholar 

  13. 13

    Jürgens, G. Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J. 20, 3609–3616 (2001)

    Article  Google Scholar 

  14. 14

    Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999)

    CAS  Article  Google Scholar 

  15. 15

    Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673 (2002)

    CAS  Article  Google Scholar 

  16. 16

    Mattsson, J., Ckurshumova, W. & Berleth, T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol. 131, 1327–1339 (2003)

    CAS  Article  Google Scholar 

  17. 17

    Reinhardt, D., Mandel, T. & Kuhlemeier, C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507–518 (2000)

    CAS  Article  Google Scholar 

  18. 18

    Kuhlemeier, C. & Reinhardt, D. Auxin and phyllotaxis. Trends Plant Sci. 6, 187–189 (2001)

    CAS  Article  Google Scholar 

  19. 19

    Lomax, T. L., Muday, G. K. & Rubery, P. H. in Plant Hormones: Physiology, Biochemistry and Molecular Biology (ed. Davies, P. J.) 509–530 (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  20. 20

    Friml, J. & Palme, K. Polar auxin transport—old questions and new concepts? Plant Mol. Biol. 49, 273–284 (2002)

    CAS  Article  Google Scholar 

  21. 21

    Friml, J., Wísniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002)

    ADS  Article  Google Scholar 

  22. 22

    Bennett, M. J. et al. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273, 948–950 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Gälweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998)

    ADS  Article  Google Scholar 

  24. 24

    Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999)

    CAS  Article  Google Scholar 

  25. 25

    Sachs, T. The control of patterned differentiation of vascular tissues. Adv. Bot. Res. 9, 151–262 (1981)

    Article  Google Scholar 

  26. 26

    Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. & Meyerowitz, E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859 (1992)

    CAS  Article  Google Scholar 

  27. 27

    Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. & Shimura, Y. Requirement of the auxin polar transport-system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991)

    CAS  Article  Google Scholar 

  28. 28

    Bennett, S. R. M., Alvarez, J., Bossinger, G. & Smyth, D. R. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 8, 505–520 (1995)

    CAS  Article  Google Scholar 

  29. 29

    Przemeck, G. K. H., Mattsson, J., Hardtke, C. S., Sung, Z. R. & Berleth, T. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229–237 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Christensen, S. K., Dagenais, N., Chory, J. & Weigel, D. Regulation of auxin response by the protein kinase PINOID. Cell 100, 469–478 (2000)

    CAS  Article  Google Scholar 

  31. 31

    Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. & Offringa, R. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057–4067 (2001)

    CAS  Google Scholar 

  32. 32

    Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P. & Traas, J. PIN-FORMED1 regulates cell fate at the periphery of the shoot apical meristem. Development 127, 5157–5165 (2000)

    CAS  PubMed  Google Scholar 

  33. 33

    Delbarre, A., Muller, P., Imhoff, V. & Guern, J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198, 532–541 (1996)

    CAS  Article  Google Scholar 

  34. 34

    Stieger, P. A., Reinhardt, D. & Kuhlemeier, C. The auxin influx carrier is essential for correct leaf positioning. Plant J. 32, 509–517 (2002)

    CAS  Article  Google Scholar 

  35. 35

    Parry, G. et al. Quick on the uptake: Characterization of a family of plant auxin influx carriers. J. Plant Growth Regul. 20, 217–225 (2001)

    CAS  Article  Google Scholar 

  36. 36

    Swarup, R. et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 15, 2648–2653 (2001)

    CAS  Article  Google Scholar 

  37. 37

    Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001)

    CAS  Article  Google Scholar 

  38. 38

    Geldner, N., Friml, J., Stierhof, Y. D., Jürgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003)

    CAS  Article  Google Scholar 

  40. 40

    Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469–481 (1999)

    CAS  Google Scholar 

  41. 41

    Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. & Tasaka, M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857 (1997)

    CAS  Article  Google Scholar 

  42. 42

    Fleming, A. J., McQueen-Mason, S., Mandel, T. & Kuhlemeier, C. Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415–1418 (1997)

    CAS  Article  Google Scholar 

  43. 43

    Schwabe, W. W. in Positional Controls in Plant Development (eds Barlow, P. W. & Carr, D. J.) 403–440 (Cambridge Univ. Press, Cambridge, UK, 1984)

    Google Scholar 

Download references

Acknowledgements

We thank J. Moore, J. Stuurman and S. Zeeman for critical reading of the manuscript, and T. Vernoux for generating pin1;pid double mutants and H. Morin for supporting experiments. This work was supported by grants from the Swiss National Science Foundation and from the European Union.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cris Kuhlemeier.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reinhardt, D., Pesce, ER., Stieger, P. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003). https://doi.org/10.1038/nature02081

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing