Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneously emerging cortical representations of visual attributes

Abstract

Spontaneous cortical activity—ongoing activity in the absence of intentional sensory input—has been studied extensively1, using methods ranging from EEG (electroencephalography)2,3,4, through voltage sensitive dye imaging5,6,7, down to recordings from single neurons8,9. Ongoing cortical activity has been shown to play a critical role in development10,11,12,13,14, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity5,15,16, and is correlated with behaviour17. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron6. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparing instantaneous patterns of spontaneous and evoked activity to the averaged functional map.
Figure 2: Spontaneously emerging orientation states.
Figure 3: Dynamics of ongoing activity.
Figure 4: Spontaneous states revealed using a Kohonen algorithm.

Similar content being viewed by others

References

  1. Lestienne, R. Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog. Neurobiol. 65, 545–591 (2001)

    Article  CAS  Google Scholar 

  2. Creutzfeldt, O. D., Watanabe, S. & Lux, H. D. Relations between EEG phenomena and potentials of single cortical cells: II. Spontaneous and convulsoid activity. Electroenceph. Clin. Neurophysiol. 20, 19–37 (1966)

    Article  CAS  Google Scholar 

  3. Scherrer, J. Organization of spontaneous electrical activity in the neocortex. Prog. Brain Res. 45, 309–325 (1976)

    Article  CAS  Google Scholar 

  4. Elul, R. The genesis of the EEG. Int. Rev. Neurobiol. 15, 227–272 (1971)

    Article  CAS  Google Scholar 

  5. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999)

    Article  CAS  Google Scholar 

  7. Arieli, A., Shoham, D., Hildesheim, R. & Grinvald, A. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual-cortex. J. Neurophysiol. 73, 2072–2093 (1995)

    Article  CAS  Google Scholar 

  8. Noda, H. & Adey, W. R. Firing variability in cat association cortex during sleep and wakefulness. Brain Res. 18, 513–526 (1970)

    Article  CAS  Google Scholar 

  9. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993)

    Article  CAS  Google Scholar 

  10. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Thompson, I. Cortical development: A role for spontaneous activity? Curr. Biol. 7, R324–R326 (1997)

    Article  CAS  Google Scholar 

  12. McCormick, D. A. Developmental neuroscience — Spontaneous activity: Signal or noise? Science 285, 541–543 (1999)

    Article  CAS  Google Scholar 

  13. Sur, M., Angelucci, A. & Sharma, J. Rewiring cortex: The role of patterned activity in development and plasticity of neocortical circuits. J. Neurobiol. 41, 33–43 (1999)

    Article  CAS  Google Scholar 

  14. Chiu, C. & Weliky, M. Relationship of correlated spontaneous activity to functional ocular dominance columns in the developing visual cortex. Neuron 35, 1123–1134 (2002)

    Article  CAS  Google Scholar 

  15. Kisley, M. A. & Gerstein, G. L. Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. J. Neurosci. 19, 10451–10460 (1999)

    Article  CAS  Google Scholar 

  16. Azouz, R. & Gray, C. M. Cellular mechanisms contributing to response variability of cortical neurons in vivo. J. Neurosci. 19, 2209–2223 (1999)

    Article  CAS  Google Scholar 

  17. Adrian, E. D. & Matthews, B. H. C. The Berger rhythm: Potential changes from the occipital lobes in man. Brain 57, 355–385 (1934)

    Article  Google Scholar 

  18. Grinvald, A. et al. in Modern Techniques in Neuroscience Research (eds Windhorst, U. & Johansson, H.) 893–969 (Springer, Heidelberg, 1999)

    Book  Google Scholar 

  19. Petersen, C. C., Grinvald, A. & Sakmann, B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23, 1298–1309 (2003)

    Article  CAS  Google Scholar 

  20. Li, B., Peterson, M. R. & Freeman, R. D. Oblique effect: A neural basis in the visual cortex. J. Neurophysiol. 90, 204–217 (2003)

    Article  Google Scholar 

  21. Wang, G., Ding, S. & Yunokuchi, K. Difference in the representation of cardinal and oblique contours in cat visual cortex. Neurosci. Lett. 338, 77–81 (2003)

    Article  CAS  Google Scholar 

  22. Bonhoeffer, T. & Grinvald, A. The layout of iso-orientation domains in area-18 of cat visual-cortex—optical imaging reveals a pinwheel-like organization. J. Neurosci. 13, 4157–4180 (1993)

    Article  CAS  Google Scholar 

  23. Chapman, B. & Bonhoeffer, T. Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proc. Natl Acad. Sci. USA 95, 2609–2614 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Coppola, D. M., White, L. E., Fitzpatrick, D. & Purves, D. Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc. Natl Acad. Sci. USA 95, 2621–2623 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Kohonen, T. Self-Organizing Maps (Springer, Berlin, 2000)

    MATH  Google Scholar 

  26. Fries, P., Neuenschwander, S., Engel, A. K., Goebel, R. & Singer, W. Rapid feature selective neuronal synchronization through correlated latency shifting. Nature Neurosci. 4, 194–200 (2001)

    Article  CAS  Google Scholar 

  27. Ben-Yishai, R., Bar-Or, R. L. & Sompolinsky, H. Theory of orientation tuning in visual-cortex. Proc. Natl Acad. Sci. USA 92, 3844–3848 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995)

    Article  CAS  Google Scholar 

  29. Ernst, U. A., Pawelzik, K. R., Sahar-Pikielny, C. & Tsodyks, M. V. Intracortical origin of visual maps. Nature Neurosci. 4, 431–436 (2001)

    Article  CAS  Google Scholar 

  30. Shoham, D. et al. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24, 791–802 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Aertsen, N. Tishbi, R. Malach and J. M. Herrmann for discussions and insights, R. Hildesheim for the dyes, B. Blumenfeld for his suggestion for the orientation preference map in Fig. 4B, and D. Etner and Y. Toledo for technical assistance. This work was supported by grants from the Israeli Science Foundation, Grodetsky Center and Irving B. Harris Foundation (to M.T.), the Grodetsky Center, the Korber and Israeli Science foundations and the BMBF/MOS (to A.G.) and the Minerva Foundation (to D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Kenet.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenet, T., Bibitchkov, D., Tsodyks, M. et al. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003). https://doi.org/10.1038/nature02078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02078

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing