A polymer/semiconductor write-once read-many-times memory


Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils1,2,3. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generalized architecture of the WORM memory, and the materials used in its implementation.
Figure 2: The switching characteristics of the WORM memory pixel.
Figure 3: The switching process of the WORM memory pixel is shown under several different writing conditions.
Figure 4: The behaviour of the WORM memory element under transient voltage pulse conditions.


  1. 1

    Forrest, S. R., Burrows, P. E. & Thompson, M. E. Organic emitters promise a new generation of displays. Laser Focus World, Feb., 99–101 (1995)

  2. 2

    Gelinck, G. H., Geuns, T. C. T. & Leeuw, D. M. d. High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487–1489 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Saluel, D., Daval, J., Bechevet, B., Germain, C. & Valon, B. Ultra high density data storage on phase change materials with electrical micro-tips. J. Magn. Magn. Mater. 193, 488–491 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Asokan, S. Electrical switching in chalcogenide glasses—Some newer insights. J. Optoelectron. Adv. Mater. 3, 753–756 (2001)

    CAS  Google Scholar 

  6. 6

    Stocker, H. J. Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses. Appl. Phys. Lett. 15, 55–57 (1969)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Hua, Z. Y., Chen, G. R., Xu, W. & Chen, D. Y. New organic bistable films for ultrafast electric memories. Appl. Surf. Sci. 169, 447–451 (2001)

    ADS  Article  Google Scholar 

  8. 8

    Heuer, H. W., Wehrmann, R. & Kirchmeyer, S. Electrochromic window based on conducting poly (3,4-ethylenedioxythiophene)poly(styrene sulfonate). Adv. Funct. Mater. 12, 89–94 (2002)

    CAS  Article  Google Scholar 

  9. 9

    Groenendaal, B. L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, 481–494 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Hack, M. & Street, R. A. Analysis of double injection in amorphous silicon p-i-n diodes. J. Appl. Phys. 72, 2331–2339 (1992)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Johansson, T., Pettersson, L. A. A. & Inganas, O. Conductivity of de-doped poly(3,4-ethylenedioxythiophene). Synth. Met. 129, 269–274 (2002)

    CAS  Article  Google Scholar 

  12. 12

    Greczynski, G. et al. Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results. J. Electron Spectrosc. Rel. Phenom. 121, 1–17 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Xing, K. Z., Fahlman, M., Chen, X. W., Inganas, O. & Salaneck, W. R. The electronic structure of poly(3,4-ethylene-dioxythiophene): Studied by XPS and UPS. Synth. Met. 89, 161–165 (1997)

    CAS  Article  Google Scholar 

  14. 14

    Pei, Q. B., Zuccarello, G., Ahlskog, M. & Inganas, O. Electrochromic and highly stable poly(3,4- ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351 (1994)

    CAS  Article  Google Scholar 

Download references


We thank A. Elschner and H. C. Starck for samples of Baytron P, and M. Thompson for discussions. We also thank National Renewable Energy Laboratories for supplying the thin-film Si diodes. This work was supported by HP and the National Science Foundation.

Author information



Corresponding author

Correspondence to Stephen R. Forrest.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Möller, S., Perlov, C., Jackson, W. et al. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003). https://doi.org/10.1038/nature02070

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing