Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Demonstration of an all-optical quantum controlled-NOT gate

Abstract

The promise of tremendous computational power, coupled with the development of robust error-correcting schemes1, has fuelled extensive efforts2 to build a quantum computer. The requirements for realizing such a device are confounding: scalable quantum bits (two-level quantum systems, or qubits) that can be well isolated from the environment, but also initialized, measured and made to undergo controllable interactions to implement a universal set of quantum logic gates3. The usual set consists of single qubit rotations and a controlled-NOT (CNOT) gate, which flips the state of a target qubit conditional on the control qubit being in the state 1. Here we report an unambiguous experimental demonstration and comprehensive characterization of quantum CNOT operation in an optical system. We produce all four entangled Bell states as a function of only the input qubits' logical values, for a single operating condition of the gate. The gate is probabilistic (the qubits are destroyed upon failure), but with the addition of linear optical quantum non-demolition measurements, it is equivalent to the CNOT gate required for scalable all-optical quantum computation4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A schematic of the CNOT gate realized in this work.
Figure 2: Experimental demonstration of classical CNOT operation—operation in the logical basis.
Figure 3: Conditional coincidence fringes for non-orthogonal bases.
Figure 4: Density matrices for two highly entangled output states.

References

  1. 1

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. 2

    Clark, R. G. (ed.) Quant. Inform. Comput. 1 (special issue on implementation of quantum computation) 1–50 (2001)

  3. 3

    DiVincenzo, D. P. & Loss, D. Quantum information is physical. Superlatt. Microstruct. 23, 419–432 (1998)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Vandersypen, L. M. K. et al. Experimental realisation of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Schmidt-Kaler, F. et al. Realisation of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Pashkin, Yu. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Article  Google Scholar 

  11. 11

    Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  12. 12

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Koashi, M., Yamamoto, T. & Imoto, N. Probabilistic manipulation of entangled photons. Phys. Rev. A 63, 030301 (2001)

    ADS  Article  Google Scholar 

  14. 14

    Pan, J.-W., Simon, C., Brukner, Č. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001)

    ADS  Article  Google Scholar 

  16. 16

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    ADS  Article  Google Scholar 

  18. 18

    Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    James, D. F. V. & Kwiat, P. G. Atomic-vapor-based high efficiency optical detectors with photon number resolution. Phys. Rev. Lett. 89, 183601 (2002)

    ADS  Article  Google Scholar 

  20. 20

    Imamoglu, A. High efficiency photon counting using stored light. Phys. Rev. Lett. 89, 163602 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Ralph, T. C., Langford, N. K., Bell, T. B. & White, A. G. Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324 (2001)

    ADS  Article  Google Scholar 

  22. 22

    Hofmann, H. F. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2001)

    ADS  Article  Google Scholar 

  23. 23

    Kok, P., Lee, H. & Dowling, J. P. Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)

    ADS  Article  Google Scholar 

  24. 24

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kurtsiefer, C., Oberparleiter, M. & Weinfurter, H. High-efficiency entangled photon pair collection in type-II parametric fluorescence. Phys. Rev. A 64, 023802 (2001)

    ADS  Article  Google Scholar 

  26. 26

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    ADS  Article  Google Scholar 

  27. 27

    Munro, W. J., Nemoto, K. & White, A. G. The Bell inequality: A measure of entanglement? J. Mod. Opt. 48, 1239–1246 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  28. 28

    Pittman, T. B., Fitch, M. J., Jacobs, B. C. & Franson, J. D. Experimental controlled-NOT logic gate for single photons. Preprint at 〈http://arXiv.org/quant-ph/0303095〉 (2003)

  29. 29

    Dodd, J. L., Ralph, T. C. & Milburn, G. J. Experimental requirements for Grover's algorithm in optical quantum computation. Phys. Rev. A (in the press); preprint at 〈http://arXiv.org/quant-ph/0306081〉 (2003)

  30. 30

    Takeuchi, S. Beamlike twin-photon generation by use of type II parametric downconversion. Opt. Lett. 26, 843–845 (2001)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. K. Langford for experimental work related to non-classical interference, T. B. Bell for work on the quantum state tomography system, and P. T. Cochrane, J. L. Dodd, A. Gilchrist, P. G. Kwiat, G. J. Milburn, W. J. Munro and M. A. Nielsen for discussions. This work was supported by the Australian government, the Australian Research Council, the US National Security Agency (NSA) and Advanced Research and Development Activity (ARDA) under the Army Research Office (ARO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. L. O'Brien.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Brien, J., Pryde, G., White, A. et al. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003). https://doi.org/10.1038/nature02054

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing