Cenozoic climate change as a possible cause for the rise of the Andes

Abstract

Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount of subducted sediments. We propose that the dynamics of subduction and mountain-building in this region are controlled by the processes of erosion and sediment deposition, and ultimately climate. In central South America, climate-controlled sediment starvation would then cause high shear stress, focusing the plate boundary stresses that support the high Andes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tectonic map of the Andean plate margin along the western side of South America between 0 and 50° S.
Figure 2: Plots showing latitudinal variations along the length of the Peru–Chile trench between 3° to 46° S (ref. 1).
Figure 3: Two cartoons illustrating how the presence or absence of significant trench fill could affect the process of subduction.
Figure 4: The Peru–Chile current system42 and the associated wind-induced oceanic upwelling can be clearly seen in the sea surface temperatures (interpolated satellite and in situ measurements from NOAA website: www.nodc.noaa.gov) for July 2002—a tongue of water nearly 8 °C colder than that at equivalent latitudes farther west extends up the west coast of South America.
Figure 5: Major global climatic trends, and Andean tectonic evolution at 20° S, compiled from various sources.

References

  1. 1

    Digital Elevation Model (3m × 3m) of South America (Getech, Univ. Leeds, Leeds, UK, 1998)

  2. 2

    Muller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M. & Sclater, J. G. Digital isochrons of the world's ocean floor. J. Geophys. Res. 102, 3211–3214 (1997)

    ADS  Article  Google Scholar 

  3. 3

    Cahill, T. & Isacks, B. L. Seismicity and shape of the subducted Nazca plate. J. Geophys. Res. 97, 17503–17529 (1992)

    ADS  Article  Google Scholar 

  4. 4

    Springer, M. Heat-flow density across the Central Andean subduction zone. Tectonophysics 291, 123–139 (1998)

    ADS  Article  Google Scholar 

  5. 5

    Lamb, S. H. Active deformation in the Bolivian Andes, South America. J. Geophys. Res. 105, 25627–25653 (2000)

    ADS  Article  Google Scholar 

  6. 6

    National Earthquake Information Center (NEIC) Earthquake Catalogue (World Data Centre for Seismology, United States Geological Survey, Denver, 2003)

    Google Scholar 

  7. 7

    Mercier, J. L. et al. Changes in the tectonic regime above a subduction zone of Andean type: the Andes of Peru and Bolivia during the Plio-Pleistocene. J. Geophys. Res. 97, 11945–11982 (1992)

    ADS  Article  Google Scholar 

  8. 8

    Suarez, G., Molnar, P. & Burchfiel, B. C. Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and Southern Columbia. J. Geophys. Res. 88, 10403–10428 (1983)

    ADS  Article  Google Scholar 

  9. 9

    Schwartz, D. Paleoseismicity and neotectonics of the Cordillera Blanca Fault Zone, Northern Peruvian Andes. J. Geophys. Res. 93, 4712–4730 (1988)

    ADS  Article  Google Scholar 

  10. 10

    Allmendinger, R. W., Jordan, T. E., Kay, S. M. & Isacks, B. L. The evolution of the Altiplano Plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 25, 139–174 (1997)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Cembrano, J., Herve, F. & Lavenu, A. The Liquine Ofqui fault zone: a long lived intra-arc fault system in southern Chile. Tectonophysics 259, 55–66 (1996)

    ADS  Article  Google Scholar 

  12. 12

    Cladouhos, T., Allmendinger, R., Coira, B. & Ferrar, E. Late Cenozoic deformation in the central Andes: Fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia. J. Soc. Am. Earth Sci. 7, 209–228 (1994)

    Article  Google Scholar 

  13. 13

    Lamb, S. H. & Hoke, L. Origin of the high plateau in the central Andes, Bolivia, South America. Tectonics 16, 623–649 (1997)

    ADS  Article  Google Scholar 

  14. 14

    Lamb, S. H. Vertical axis rotation in the Bolivian orocline, South America, 2: Kinematic and dynamical implications. J. Geophys. Res. 106, 26605–26632 (2001b)

    ADS  Article  Google Scholar 

  15. 15

    Molnar, P. & England, P. Temperatures, heat flux, and frictional stress near major thrust faults. J. Geophys. Res. 95, 4833–4856 (1990)

    ADS  Article  Google Scholar 

  16. 16

    Peacock, S. in Subduction, Top to Bottom (eds Bebout, G. E. et al.) 119–133 (Geophys. Monogr. 96, American Geophysical Union, Washington, 1996)

    Google Scholar 

  17. 17

    Tichelaar, B. W. & Ruff, L. J. Depth of seismic coupling along subduction zones. J. Geophys. Res. 98, 2017–2037 (1993)

    ADS  Article  Google Scholar 

  18. 18

    Doser, D. I. The Ancash, Peru, earthquake of 1946 November 10: evidence for low-angle normal faulting in the high Andes of northern Peru. Geophys. J. R. Astron. Soc. 91, 57–71 (1987)

    ADS  Article  Google Scholar 

  19. 19

    Judge, A. V. & McNutt, M. Curvature and elastic plate thickness in the Peru-Chile trench. J. Geophys. Res. 96, 16,625–16,640 (1991)

    ADS  Article  Google Scholar 

  20. 20

    Delouis, B. et al. The Andean subduction zone between 22 and 25°S (northern Chile): precise geometry and state of stress. Tectonophysics 259, 67–80 (1996)

    Article  Google Scholar 

  21. 21

    Klotz, J. et al. GPS-derived deformation of the Central Andes including the 1995 Antofagasta Mw = 8.0 Earthquake. Pure Appl. Geophys. 154, 709–730 (1999)

    ADS  Article  Google Scholar 

  22. 22

    Barrientos, S. E. & Ward, S. N. The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys. J. Int. 103, 589–598 (1990)

    ADS  Article  Google Scholar 

  23. 23

    Angermann, D., Klotz, J. & Reigber, C. Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet. Sci. Lett. 171, 329–334 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Hyndman, R. D. & Wang, K. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone. J. Geophys. Res. 98, 2039–2060 (1993)

    ADS  Article  Google Scholar 

  25. 25

    Montgomery, D. R., Balco, G. & Willet, S. D. Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582 (2001)

    ADS  Article  Google Scholar 

  26. 26

    Kulm, L. D., Schweller, W. J. & Masias, A. in Island Arcs, Deep Sea Trenches and Back-Arc Basins (eds Talwani, M. & Pitman, W. C. III) 285–301 (Maurice Ewing Ser. 1, American Geophysical Union, 1977)

    Google Scholar 

  27. 27

    Thornburg, T. & Kulm, L. D. Sedimentation in the Chile Trench: Depositional morphologies, lithofacies, and stratigraphy. Bull. Geol. Soc. Am. 98, 33–52 (1987)

    Article  Google Scholar 

  28. 28

    Bangs, N. L. & Cande, S. C. Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16, 489–503 (1997)

    ADS  Article  Google Scholar 

  29. 29

    Giese, P., Reutter, K. J. & Scheuber, E. Welche Prozesse haben die Entstehung der extremen Dimensionen der zentralen Anden verursacht? Deformationsprozesse in den Anden 15–34 (Sonderforschungsbereich 267, Freie Univ. Berlin/Tech. Univ. Berlin/GeoForschungsZentrum Potsdam/Univ. Potsdam, Berlin, 1998)

    Google Scholar 

  30. 30

    von Huene, R. & Scholl, D. W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316 (1991)

    ADS  Article  Google Scholar 

  31. 31

    von Huene, R. & Ranero, C. R. Subduction erosion and basal friction along the sediment-starved convergent margin of Antofagasta, Chile. J. Geophys. Res. 108, 2079, doi:10.1029/2001JB001569 (2003)

    ADS  Article  Google Scholar 

  32. 32

    Ruff, L. J. Do trench sediments affect great earthquake occurrence in subduction zones? Pure Appl. Geophys. 129, 263–282 (1989)

    ADS  Article  Google Scholar 

  33. 33

    Gutscher, M. A. & Peacock, S. M. Thermal models of flat subduction and the rupture zone of great subduction earthquakes. J. Geophys. Res. 108(B1), 2009, doi:10.1029/2001JB000787 (2003)

    ADS  Article  Google Scholar 

  34. 34

    Clapperton, C. Quaternary Geology and Geomorphology of South America (Elsevier, Amsterdam, 1993)

    Google Scholar 

  35. 35

    Schwertfelder, W. (ed.) Climates of Central and South America 1–532 (Elsevier, New York, 1976)

  36. 36

    Pardo-Casas, F. & Molnar, P. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6, 233–248 (1987)

    ADS  Article  Google Scholar 

  37. 37

    Somoza, R. Updated Nazca (Farallon)–South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J. Soc. Am. Earth Sci. 11, 211–215 (1998)

    Article  Google Scholar 

  38. 38

    Watts, A., Lamb, S., Fairhead, J. & Dewey, J. F. Lithospheric flexure and bending of the central Andes. Earth Planet. Sci. Lett. 134, 9–21 (1995)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Hindle, D. et al. Consistent geologic and geodetic displacements during Andean orogenesis. Geophys. Res. Lett. 29, 3757–3761 (2002)

    Article  Google Scholar 

  40. 40

    Zachos, J., Pagani, N., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in the global climate 65 Ma to present. Science 292, 686–693 (2001)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. Lond. 160, 7–10 (2003)

    Article  Google Scholar 

  42. 42

    Strub, P. T. The Sea–Global Coastal Ocean, Regional Studies and Syntheses. (eds Robinson, A. R. & Brink, K. H.) 273–315 (Wiley, New York, 1998)

    Google Scholar 

  43. 43

    Keller, G. et al. The Cretaceous/Tertiary boundary event in Ecuador: reduced biotic effects due to the eastern boundary current setting. Mar. Micropaleontol. 31, 97–133 (1997)

    ADS  Article  Google Scholar 

  44. 44

    Rind, D. Latitudinal temperature gradients and climate change. J. Geophys. Res. 103(D6), 5943–5971 (1998)

    ADS  Article  Google Scholar 

  45. 45

    Gubbels, T. L., Isacks, B. L. & Farrar, E. High-level surfaces, plateau uplift, and foreland basin development, Bolivian central Andes. Geology 21, 695–698 (1993)

    ADS  Article  Google Scholar 

  46. 46

    Lamb, S. H. Vertical axis rotation in the Bolivian orocline, South America, 1: Paleomagnetic analysis of Cretaceous and Cenozoic rocks. J. Geophys. Res. 106, 26633–26653 (2001a)

    ADS  Article  Google Scholar 

  47. 47

    Gregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Bull. Geol. Soc. Am. 112, 1091–1105 (2000)

    Article  Google Scholar 

  48. 48

    Lamb, S. H., Hoke, L., Kennan, L. & Dewey, J. in Orogeny Through Time (eds Burg, J.-P. & Ford, M.) 237–264 (Geol. Soc. Spec. Publ., Geological Society of London, UK, 1997)

    Google Scholar 

  49. 49

    Horton, B. K., Hampton, B. A., LaReau, B. N. & Baldellon, E. Tertiary provenance history of the northern and central Altiplano (central Andes, Bolivia): A detrital record of plateau margin tectonics. J. Sedim. Res. 72, 711–726 (2002)

    CAS  Article  Google Scholar 

  50. 50

    Crouch, S. T. Rifts and swells: Geophysical constraints on causality. Tectonophysics 94, 23–37 (1983)

    ADS  Article  Google Scholar 

  51. 51

    Smith, A. G. in Thrust and Nappe Tectonics (eds McClay, K. R. & Price, N. J.) 111–124 (Geol. Soc. Spec. Publ. 9, Geological Society of London, UK, 1981)

    Google Scholar 

  52. 52

    Beck, S. et al. Crustal thickness variations in the central Andes. Geology 24, 407–410 (1996)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Union, Natural Environment Research Council, and Royal Society (S.H.L.) and a visiting Leverhulme professorship (P.D.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simon Lamb.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lamb, S., Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797 (2003). https://doi.org/10.1038/nature02049

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.