Letter | Published:

The birth of a quasiparticle in silicon observed in time–frequency space

Abstract

The concept of quasiparticles in solid-state physics is an extremely powerful tool for describing complex many-body phenomena in terms of single-particle excitations1. Introducing a simple particle, such as an electron, hole or phonon, deforms a many-body system through its interactions with other particles. In this way, the added particle is ‘dressed’ or ‘renormalized’ by a self-energy cloud that describes the response of the many-body system, so forming a new entity—the quasiparticle. Using ultrafast laser techniques, it is possible to impulsively generate bare particles and observe their subsequent dressing by the many-body interactions (that is, quasiparticle formation) on the time and energy scales governed by the Heisenberg uncertainty principle2. Here we describe the coherent response of silicon to excitation with a 10-femtosecond (10-14 s) laser pulse. The optical pulse interacts with the sample by way of the complex second-order nonlinear susceptibility to generate a force on the lattice driving coherent phonon excitation. Transforming the transient reflectivity signal into frequency–time space reveals interference effects leading to the coherent phonon generation and subsequent dressing of the phonon by electron–hole pair excitations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Pines, D. & Nozieres, P. Theory of Quantum Liquids (Benjamin, New York, 1966)

  2. 2

    Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001)

  3. 3

    Fischer, B. & Hofmann, K. R. A full-band Monte Carlo model for the temperature dependence of electron and hole transport in silicon. Appl. Phys. Lett. 76, 583–585 (2000)

  4. 4

    Downer, M. C. & Shank, C. V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Phys. Rev. Lett. 56, 761–764 (1986)

  5. 5

    Sjodin, T., Petek, H. & Dai, H.-L. Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111) surface. Phys. Rev. Lett. 81, 5664–5667 (1998)

  6. 6

    Sabbah, A. J. & Riffe, D. M. Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002)

  7. 7

    Buhleier, R., Lüpke, G., Marowsky, G., Gogolak, Z. & Kuhl, J. Anisotropic interference of degenerate four-wave mixing in crystalline silicon. Phys. Rev. B 50, 2425–2431 (1994)

  8. 8

    Bigot, J. Y., Portella, M. T., Schoenlein, R. W., Cunningham, J. E. & Shank, C. V. Two-dimensional carrier-carrier screening in a quantum well. Phys. Rev. Lett. 67, 636–639 (1991)

  9. 9

    Goldman, J. R. & Prybyla, J. A. Ultrafast dynamics of laser-excited electron distribution in silicon. Phys. Rev. Lett. 72, 1364–1367 (1994)

  10. 10

    Pfeifer, T., Dekorsky, T., Kütt, W. & Kurz, H. Generation mechanism for coherent LO phonons in surface-space-charge fields of III–V-compounds. Appl. Phys. A 55, 482–488 (1992)

  11. 11

    Saeta, P. N., Greene, B. I. & Chuang, S. L. Short terahertz pulses from semiconductor surfaces: The importance of bulk difference-frequency mixing. Appl. Phys. Lett. 63, 3482–3484 (1993)

  12. 12

    Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G. & Linfield, E. H. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002)

  13. 13

    Khurgin, J. B. Optical rectification and teraherz emission in semiconductors excited above the band gap. J. Opt. Soc. Am. B 11, 2492–2501 (1994)

  14. 14

    Sipe, J. E., Mizrahi, V. & Stegeman, G. I. Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe. Phys. Rev. B 35, 9091–9094 (1987)

  15. 15

    Caumes, J.-P., Videau, L., Rouyer, C. & Freysz, E. Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals. Phys. Rev. Lett. 89, 047401 (2002)

  16. 16

    Cerdeira, F., Fjeldly, T. A. & Cardona, M. Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si II. Optical modes. Phys. Rev. B 8, 4734–4745 (1973)

  17. 17

    Scholz, R., Pfeifer, T. & Kurz, H. Density-matrix theory of coherent phonon oscillations in germanium. Phys. Rev. B 47, 16229–16236 (1993)

  18. 18

    Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304 (2002)

  19. 19

    Lautenschlager, P., Garriga, M., Viña, L. & Cardona, M. Temperature dependence of the dielectric function and interband critical points in silicon. Phys. Rev. B 36, 4821–4830 (1987)

  20. 20

    Cerdeira, F. & Cardona, M. Effect of carrier concentration on the Raman frequencies of Si and Ge. Phys. Rev. B 5, 1440–1454 (1972)

  21. 21

    Contreras, G., Sood, A. K. & Cardona, M. Raman scattering by intervalley carrier-density fluctuations in n-type Si: Intervalley and intravalley mechanisms. Phys. Rev. B 32, 924–929 (1985)

  22. 22

    Chandrasekhar, M., Rössler, U. & Cardona, M. Intra- and interband Raman scattering by free carriers in heavily doped p-Si. Phys. Rev. B 22, 761–770 (1980)

  23. 23

    Wolff, P. A. Effect of nonparabolicity on light scattering from plasmas in solids. Phys. Rev. 171, 436–444 (1968)

  24. 24

    Bairamov, B. H., Ipatova, I. P. & Voitenko, V. A. Raman scattering from current carriers in solids. Phys. Rep. 229, 221–290 (1993)

  25. 25

    Kanehisa, M. A., Wallis, R. F. & Balkanski, M. Interband electronic Raman scattering in p-silicon. Phys. Rev. B 25, 7619–7625 (1982)

  26. 26

    Belitsky, V. I., Cantarero, A., Cardona, M., Trallero-Giner, C. & Pavlov, S. T. Feynman diagrams and Fano interference in light scattering from doped semiconductors. J. Phys. Condens. Matter 9, 5965–5976 (1997)

  27. 27

    Lautenschlager, P., Allen, P. B. & Cardona, M. Phonon-induced lifetime broadenings of electronic states and critical points in Si and Ge. Phys. Rev. B 33, 5501–5511 (1986)

  28. 28

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

  29. 29

    Balkanski, M., Jain, K. P., Beserman, R. & Jouanne, M. Theory of interference distortion of Raman scattering line shapes in semiconductors. Phys. Rev. B 12, 4328–4337 (1975)

Download references

Acknowledgements

We thank D. Boyanovsky, A. P. Heberle, K. Ishioka and J. Shan for discussions. This work was supported by the NSF, the University of Pittsburgh, a Grant-in-Aid for Scientific Research from MEXT of Japan, and NIMS Research Funds.

Author information

Correspondence to Hrvoje Petek.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Transient electro-optic reflectivity signals for Si(001), and their continuous wavelet transforms.
Figure 2: The excitation processes that give rise to the electro-optic reflectivity signal.
Figure 3: Slices of continuous wavelet transforms (CWTs) in Fig. 1 at zero delay.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.