Experimental observation of symmetry-breaking nonlinear modes in an active ring

Abstract

Solitons are large-amplitude, spatially confined wave packets in nonlinear media. They occur in a wide range of physical systems, such as water surfaces, optical fibres, plasmas, Bose–Einstein condensates and magnetically ordered media1,2. A distinguishing feature of soliton behaviour that is common to all systems, is that they propagate without a change in shape owing to the stabilizing effect of the particular nonlinearity involved1,3. When the propagation path is closed, modes consisting of one or several solitons may rotate around the ring, the topology of which imposes additional constraints on their allowed frequencies and phases4,5. Here we measure the mode spectrum of spin-wave solitons in a nonlinear active ring constructed from a magnetic ferrite film. Several unusual symmetry-breaking soliton-like modes are found, such as ‘Möbius’ solitons, which break the fundamental symmetry of 2π-periodicity in the phase change acquired per loop: a Möbius soliton needs to travel twice around the ring to meet the initial phase condition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic layout of the active ring based on an yttrium iron garnet film as the nonlinear medium for spin-wave propagation and the experimental arrangement for observation of nonlinear modes in the ring.
Figure 2: Waveforms of the modes observed in the ring.
Figure 3: Waveforms of the one-soliton modes in the experiments with two sequences of the pumping pulses.

References

  1. 1

    Remoissenet, M. Waves Called Solitons: Concepts and Experiments (Springer, Berlin/Heidelberg, 1994)

    Google Scholar 

  2. 2

    Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Agrawal, G. P. Nonlinear Fiber Optics (Academic, San Diego, 1995)

    Google Scholar 

  4. 4

    Carr, L. D., Clark, C. W. & Reinhardt, W. P. Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62, 063610 (2000)

    ADS  Article  Google Scholar 

  5. 5

    Carr, L. D., Clark, C. W. & Reinhardt, W. P. Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity. Phys. Rev. A 62, 063611 (2000)

    ADS  Article  Google Scholar 

  6. 6

    Liu, X., Qian, L. J. & Wise, F. W. Generation of optical spatiotemporal solitons. Phys. Rev. Lett. 82, 4631–4634 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bauer, M. et al. Observation of spatiotemporal self-focusing of spin waves in magnetic films. Phys. Rev. Lett. 81, 3769–3772 (1998)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kivshar, Y. S. & Malomed, B. A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    ADS  Article  Google Scholar 

  9. 9

    Li, Z., Li, L., Tian, H., Zhou, G. & Spatschek, K. H. Chirped femtosecond solitonlike laser pulse form with self-frequency shift. Phys. Rev. Lett. 89, 263901 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Kalinikos, B. A., Scott, M. M. & Patton, C. E. Self-generation of fundamental dark solitons in magnetic films. Phys. Rev. Lett. 84, 4697–4700 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kalinikos, B. A., Kovshikov, N. G., Kostylev, M. P. & Benner, H. Self-generation of spin-wave envelope soliton trains with different periods. JETP Lett. 76, 253–257 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kalinikos, B. A., Kovshikov, N. G. & Patton, C. E. Self-generation of microwave magnetic envelope soliton trains in yttrium iron garnet thin films. Phys. Rev. Lett. 80, 4301–4304 (1998)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999)

    CAS  Article  Google Scholar 

  14. 14

    Bagada, A. V., Melkov, G. A., Serga, A. A. & Slavin, A. N. Parametric interaction of dipolar spin wave solitons with localized electromagnetic pumping. Phys. Rev. Lett. 79, 2137–2140 (1997)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Kolodin, P. A. et al. Amplification of microwave magnetic envelope solitons in thin yttrium iron garnet films by parallel pumping. Phys. Rev. Lett. 80, 1976–1979 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Melkov, G. A. et al. Nonadiabatic interaction of a propagating wave packet with localized parametric pumping. Phys. Rev. E 63, 066607 (2001)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Nash, J. M., Kabos, P., Staudinger, R. & Patton, C. E. Phase profiles of microwave magnetic envelope solitons. J. Appl. Phys. 83, 2689–2699 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. We also thank J.D. Comins for a careful reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergej O. Demokritov.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demokritov, S., Serga, A., Demidov, V. et al. Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature 426, 159–162 (2003). https://doi.org/10.1038/nature02042

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing