Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immune response of Drosophila

Abstract

Drosophila mounts a potent host defence when challenged by various microorganisms. Analysis of this defence by molecular genetics has now provided a global picture of the mechanisms by which this insect senses infection, discriminates between various classes of microorganisms and induces the production of effector molecules, among which antimicrobial peptides are prominent. An unexpected result of these studies was the discovery that most of the genes involved in the Drosophila host defence are homologous or very similar to genes implicated in mammalian innate immune defences. Recent progress in research on Drosophila immune defence provides evidence for similarities and differences between Drosophila immune responses and mammalian innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Toll and Imd pathways in the control of expression of genes encoding antimicrobial peptides.
Figure 2: Selected members of the PGRP and GNBP families.
Figure 3: Parallels between the functions of interleukin-1 and Spaetzle.
Figure 4: Parallels between the TNFR and Imd pathways.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C. Jr Innate immunity. N. Engl. J. Med. 343, 338–344 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Rizki, R. M. & Rizki, T. M. Selective destruction of a host blood cell type by a parasitoid wasp. Proc. Natl Acad. Sci. USA 81, 6154–6158 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Braun, A., Hoffmann, J. A. & Meister, M. Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc. Natl Acad. Sci. USA 95, 14337–14342 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunol. 3, 121–126 (2002)

    Article  CAS  Google Scholar 

  6. Ferrandon, D. et al. A drosomycinGFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Engstrom, Y. et al. κB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232, 327–333 (1993)

    Article  CAS  PubMed  Google Scholar 

  10. Kappler, C. et al. Insect immunity. Two 17 bp repeats nesting a κB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12, 1561–1568 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nusslein-Volhard, C., Lohs-Schardin, M., Sander, K. & Cremer, C. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283, 474–476 (1980)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. St Johnston, D. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Morisato, D. & Anderson, K. V. Signaling pathways that establish the dorsal–ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29, 371–399 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll–Dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416 (1996)

    Article  CAS  PubMed  Google Scholar 

  15. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Tobias, P. S., Soldau, K. & Ulevitch, R. J. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J. Biol. Chem. 264, 10867–10871 (1989)

    CAS  PubMed  Google Scholar 

  17. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA 95, 588–593 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Rutschmann, S., Kilinc, A. & Ferrandon, D. Cutting edge: the Toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J. Immunol. 168, 1542–1546 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465–9469 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Mizuguchi, K., Parker, J. S., Blundell, T. L. & Gay, N. J. Getting knotted: a model for the structure and activation of Spatzle. Trends Biochem. Sci. 23, 239–242 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. DeLotto, Y. & DeLotto, R. Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141–148 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Weber, A. N. R. et al. Binding of the Drosophila cytokine Spaetzle to Toll is direct and establishes signaling. Nature Immunol. 8, 794–800 (2003)

    Article  CAS  Google Scholar 

  26. Horng, T. & Medzhitov, R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl Acad. Sci. USA 98, 12654–12658 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sun, H., Bristow, B. N., Qu, G. & Wasserman, S. A. A heterotrimeric death domain complex in Toll signaling. Proc. Natl Acad. Sci. USA 99, 12871–12876 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol. 3, 91–97 (2002)

    Article  CAS  Google Scholar 

  29. Charatsi, I., Luschnig, S., Bartoszewski, S., Nusslein-Volhard, C. & Moussian, B. Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mech. Dev. 120, 219–226 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Ip, Y. T. et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753–763 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380–3391 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Nicolas, E., Reichhart, J. M., Hoffmann, J. A. & Lemaitre, B. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez, N. Q., Grosshans, J., Goltz, J. S. & Stein, D. Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128, 2963–2974 (2001)

    CAS  PubMed  Google Scholar 

  37. Drier, E. A., Huang, L. H. & Steward, R. Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev. 13, 556–568 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Avila, A., Silverman, N., Diaz-Meco, M. T. & Moscat, J. The Drosophila atypical protein kinase C–ref(2)p complex constitutes a conserved module for signaling in the toll pathway. Mol. Cell. Biol. 22, 8787–8795 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 98, 12590–12595 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl Acad. Sci. USA 98, 15119–15124 (2001)

    Article  ADS  CAS  Google Scholar 

  41. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Kambris, Z., Hoffmann, J. A., Imler, J. L. & Capovilla, M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr. Patterns 2, 311–317 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. Parker, J. S., Mizuguchi, K. & Gay, N. J. A family of proteins related to Spatzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins 45, 71–80 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Keith, F. J. & Gay, N. J. The Drosophila membrane receptor Toll can function to promote cellular adhesion. EMBO J. 9, 4299–4306 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA 93, 10343–10347 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 827–837 (1999)

    Article  CAS  PubMed  Google Scholar 

  48. Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naitza, S. et al. The Drosophila immune defense against Gram-negative infection requires the death protein dFADD. Immunity 17, 575–581 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. Leulier, F., Vidal, S., Saigo, K., Ueda, R. & Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996–1000 (2002)

    Article  CAS  PubMed  Google Scholar 

  51. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000)

    Article  CAS  Google Scholar 

  53. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000)

    Article  CAS  PubMed  Google Scholar 

  57. Hu, S. & Yang, X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275, 30761–30764 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc. Natl Acad. Sci. USA 100, 5991–5996 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711–722 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Gobert, V. et al. Toll activation during bacterial infection in Drosophila requires the concomitant function of two distinct blood-borne recognition proteins. Science (submitted)

  63. Yoshida, H., Kinoshita, K. & Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854–13860 (1996)

    Article  CAS  PubMed  Google Scholar 

  64. Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. & Brey, P. T. Purification and molecular cloning of an inducible Gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl Acad. Sci. USA 93, 7888–7893 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA 95, 10078–10082 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Ochiai, M. & Ashida, M. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274, 11854–11858 (1999)

    Article  CAS  PubMed  Google Scholar 

  67. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–13777 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Ochiai, M. & Ashida, M. A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 275, 4995–5002 (2000)

    Article  CAS  PubMed  Google Scholar 

  69. Ligoxygakis, P., Pelte, N., Hoffmann, J. A. & Reichhart, J. M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114–116 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705–13710 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Cheng, X., Zhang, X., Pflugrath, J. W. & Studier, F. W. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc. Natl Acad. Sci. USA 91, 4034–4038 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Liepinsh, E., Genereux, C., Dehareng, D., Joris, B. & Otting, G. NMR structure of Citrobacter freundii AmpD, comparison with bacteriophage T7 lysozyme and homology with PGRP domains. J. Mol. Biol. 327, 833–842 (2003)

    Article  CAS  PubMed  Google Scholar 

  76. Mellroth, P., Karlsson, J. & Steiner, H. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059–7064 (2003)

    Article  CAS  PubMed  Google Scholar 

  77. Kim, M. S., Byun, M. & Oh, B. H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunol. 4, 787–793 (2003)

    Article  CAS  Google Scholar 

  78. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478–484 (2003)

    Article  CAS  Google Scholar 

  79. Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686–34694 (2001)

    Article  CAS  PubMed  Google Scholar 

  80. Dziarski, R., Platt, K. A., Gelius, E., Steiner, H. & Gupta, D. Defect in neutrophil killing and increased susceptibility to infection with non-pathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102, 689–697 (2003)

    Article  CAS  PubMed  Google Scholar 

  81. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999)

    Article  CAS  Google Scholar 

  82. Gutierrez, O. et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J. Biol. Chem. 277, 41701–41705 (2002)

    Article  CAS  PubMed  Google Scholar 

  83. Girardin, S. E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Becker, M. N., Diamond, G., Verghese, M. W. & Randell, S. H. CD14-dependent lipopolysaccharide-induced β-defensin-2 expression in human tracheobronchial epithelium. J. Biol. Chem. 275, 29731–29736 (2000)

    Article  CAS  PubMed  Google Scholar 

  85. Liu, L., Roberts, A. A. & Ganz, T. By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170, 575–580 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges invaluable exchanges with C. A. Janeway, R. A. Ezekowitz, F. Kafatos, T. Ganz and B. Beutler over many years, as well as the strongly motivating influence of H. G. Boman in the early period of these studies. I am particularly indebted to present and former associates of this group, namely P. Bulet, J. L. Dimarcq, D. Ferrandon, C. Hetru, D. Hoffmann, J. L. Imler, M. Lagueux, B. Lemaitre, E. Levashina, M. Meister, J. M. Reichhart and J. Royet.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, J. The immune response of Drosophila. Nature 426, 33–38 (2003). https://doi.org/10.1038/nature02021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02021

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing