Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling anisotropic nanoparticle growth through plasmon excitation

Abstract

Inorganic nanoparticles exhibit size-dependent properties that are of interest for applications ranging from biosensing1,2,3,4,5 and catalysis6 to optics7 and data storage8. They are readily available in a wide variety of discrete compositions and sizes9,10,11,12,13,14. Shape-selective synthesis strategies now also yield shapes other than nanospheres, such as anisotropic metal nanostructures with interesting optical properties15,16,17,18,19,20,21,22,23. Here we demonstrate that the previously described photoinduced method23 for converting silver nanospheres into triangular silver nanocrystals—so-called nanoprisms—can be extended to synthesize relatively monodisperse nanoprisms with desired edge lengths in the 30–120 nm range. The particle growth process is controlled using dual-beam illumination of the nanoparticles, and appears to be driven by surface plasmon excitations. We find that, depending on the illumination wavelengths chosen, the plasmon excitations lead either to fusion of nanoprisms in an edge-selective manner or to the growth of the nanoprisms until they reach their light-controlled final size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The bimodal growth of Ag nanoprisms.
Figure 2: The optical spectra of Ag nanoprisms.
Figure 3: The unimodal growth of nanoprisms.

Similar content being viewed by others

References

  1. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001)

    Article  CAS  Google Scholar 

  4. Nicewarner-Peña, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001)

    Article  ADS  Google Scholar 

  5. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Schmid, G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992)

    Article  CAS  Google Scholar 

  7. Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Henglein, A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15, 6738–6744 (1999)

    Article  CAS  Google Scholar 

  11. Brust, M. & Kiely, C. J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloid Surf. A 202, 175–186 (2002)

    Article  CAS  Google Scholar 

  12. Korgel, B. A. & Fitzmaurice, D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661–665 (1998)

    Article  CAS  Google Scholar 

  13. Talapin, D. V. et al. Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124, 5782–5790 (2002)

    Article  CAS  Google Scholar 

  14. Peng, X., Wickham, J. & Alivisatos, A. P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Article  CAS  Google Scholar 

  15. Chang, S. S., Shih, C. W., Chen, C. D., Lai, W. C. & Wang, C. R. C. The shape transition of gold nanorods. Langmuir 15, 701–709 (1999)

    Article  CAS  Google Scholar 

  16. Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Maillard, M., Giorgio, S. & Pileni, M. P. Silver nanodisks. Adv. Mater. 14, 1084–1086 (2002)

    Article  CAS  Google Scholar 

  18. Maillard, M., Giorgio, S. & Pileni, M.-P. Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J. Phys. Chem. B 107, 2466–2470 (2003)

    Article  CAS  Google Scholar 

  19. Pastoriza-Santos, I. & Liz-Marzan, L. M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2, 903–905 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Chen, S. H., Fan, Z. Y. & Carroll, D. L. Silver nanodisks: synthesis, characterization, and self-assembly. J. Phys. Chem. B 106, 10777–10781 (2002)

    Article  CAS  Google Scholar 

  21. Hao, E. C., Kelly, K. L., Hupp, J. T. & Schatz, G. C. Synthesis of silver nanodisks using polystyrene mesospheres as templates. J. Am. Chem. Soc. 124, 15182–15183 (2002)

    Article  CAS  Google Scholar 

  22. Sun, Y. & Xia, Y. Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 15, 695–699 (2003)

    Article  CAS  Google Scholar 

  23. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  25. Yang, W. H., Schatz, G. C. & Van Duyne, R. P. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103, 869–875 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Draine, B. T. & Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994)

    Article  ADS  Google Scholar 

  27. Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Link, S., Burda, C., Mohamed, M. B., Nikoobakht, B. & El-Sayed, M. A. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. B 103, 1165–1170 (1999)

    Article  CAS  Google Scholar 

  30. Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of a Cary 500 spectrometer in the Keck Biophysics Facility at Northwestern University. C.A.M and G.C.S. thank the AFOSR, ONR, DARPA and NSF for support of this work. R.J. is grateful for the support of the American Chemical Society Cognis Fellowship in Colloid and Surface Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George C. Schatz or Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, R., Charles Cao, Y., Hao, E. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003). https://doi.org/10.1038/nature02020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02020

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing