Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New frog family from India reveals an ancient biogeographical link with the Seychelles


About 96% of the more than 4,800 living anuran species1 belong to the Neobatrachia or advanced frogs2,3,4. Because of the extremely poor representation of these animals in the Mesozoic fossil record, hypotheses on their early evolution have to rely largely on extant taxa5,6,7. Here we report the discovery of a burrowing frog from India that is noticeably distinct from known taxa in all anuran families. Phylogenetic analyses of 2.8 kilobases of mitochondrial and nuclear DNA unambiguously designate this frog as the sister taxon of Sooglossidae, a family exclusively occurring on two granitic islands of the Seychelles archipelago8. Furthermore, molecular clock analyses9 uncover the branch leading to both taxa as an ancient split in the crown-group Neobatrachia. Our discovery discloses a lineage that may have been more diverse on Indo-Madagascar in the Cretaceous period, but now only comprises four species on the Seychelles and a sole survivor in India. Because of its very distinct morphology and an inferred origin that is earlier than several neobatrachian families10, we recognize this frog as a new family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Holotype of Nasikabatrachus sahyadrensis.
Figure 2: Bayesian consensus phylogram for the analysis of 2,325 bp of DNA.
Figure 3: Early evolution of advanced frogs.

Similar content being viewed by others


  1. AmphibiaWeb [online] 〈〉 (Berkeley, California, 2003).

  2. Frost, D. R. Amphibian Species of the World: an Online Reference V2.21 〈〉 (American Museum of Natural History, 15 July 2002).

  3. Ford, L. S. & Cannatella, D. C. The major clades of frogs. Herpetol. Monogr. 7, 94–117 (1993)

    Article  Google Scholar 

  4. Duellman, W. E. & Trueb, L. Biology of Amphibians 1–670 (John Hopkins Univ. Press, Baltimore/London, 1986)

    Google Scholar 

  5. Hay, J. M., Ruvinsky, I., Hedges, S. B. & Maxson, L. R. Phylogenetic relationships of amphibian families inferred from DNA sequences of mitochondrial 12S and 16S ribosomal RNA genes. Mol. Biol. Evol. 12, 928–937 (1995)

    CAS  PubMed  Google Scholar 

  6. Ruvinsky, I. & Maxson, L. R. Phylogenetic relationships among bufonoid frogs (Anura: Neobatrachia) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 5, 533–547 (1996)

    Article  CAS  Google Scholar 

  7. Feller, A. E. & Hedges, S. B. Molecular evidence for the early history of living amphibians. Mol. Phylogenet. Evol. 9, 509–516 (1998)

    Article  CAS  Google Scholar 

  8. Nussbaum, R. A. Phylogenetic implications of amplectic behavior in sooglossid frogs. Herpetologica 36, 1–5 (1980)

    Google Scholar 

  9. Thorne, J. L. & Kishino, H. Divergence time and evolutionary rate estimation with multilocus data. Syst. Biol. 51, 689–702 (2002)

    Article  Google Scholar 

  10. Avise, J. C. & Johns, G. C. Proposal for a standardized temporal scheme of biological classification for extant species. Proc. Natl Acad. Sci. USA 96, 7358–7363 (1999)

    Article  CAS  Google Scholar 

  11. Savage, J. M. in Evolutionary Biology of the Anurans: Contemporary Research on Major Problems (ed. Vial, J. L.) 351–445 (Univ. Missouri Press, Columbia, 1973)

    Google Scholar 

  12. Coffin, M. F. & Rabinowitz, P. D. in Geology and Geophysics of Continental Margins (eds Watkins, J. S., Zhiqiang, F. & McMillen, K. J.) 207–246 (American Association of Petroleum Geologists, Tulsa, Oklahoma, 1992)

    Google Scholar 

  13. Tyler, M. J. Phylogenetic significance of the superficial mandibular musculature and vocal sac structure of sooglossid frogs. Herpetologica 41, 173–176 (1985)

    Google Scholar 

  14. Hay, W. W. et al. in Evolution of the Cretaceous Ocean-Climate System (eds Barrera, E. & Johnson, C.) 1–48 (Geological Society of America, Boulder, 1999)

    Book  Google Scholar 

  15. Wilkinson, M., Sheps, J. A., Oommen, O. V. & Cohen, B. L. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences. Mol. Phylogenet. Evol. 23, 401–407 (2002)

    Article  CAS  Google Scholar 

  16. Bossuyt, F. & Milinkovitch, M. C. Amphibians as indicators of Early Tertiary ‘Out-of-India’ dispersal of vertebrates. Science 292, 92–95 (2001)

    Article  Google Scholar 

  17. Spinar, Z. V. & Hodrova, M. New knowledge of the genus Indobatrachus (Anura) from the Lower Eocene of India. Amphib. Reptil. 6, 363–376 (1985)

    Article  Google Scholar 

  18. Lynch, J. D. Evolutionary Relationships, Osteology and Zoogeography of Leptodactyloid Frogs 1–238 (Univ. Kansas, Museum of Nat. Hist. Misc. Publ. 53, Lawrence, 1971)

    Google Scholar 

  19. Nussbaum, R. A. Mitotic chromosomes of Sooglossidae (Amphibia: Anura). Caryologia 32, 279–298 (1979)

    Article  Google Scholar 

  20. Krause, D. W., Prasad, G. V. R., von Koenigswald, W., Sahni, A. & Grine, F. E. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390, 504–507 (1997)

    Article  CAS  Google Scholar 

  21. Krause, D. W. Fossil molar from a Madagascan marsupial. Nature 412, 497–498 (2001)

    Article  CAS  Google Scholar 

  22. Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl Acad. Sci. USA 97, 6585–6590 (2000)

    Article  CAS  Google Scholar 

  23. Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods) Version 4.0b10 (Sinauer Associates, Sunderland, Massachusetts, 2002)

    Google Scholar 

  24. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)

    Article  CAS  Google Scholar 

  25. Lemmon, A. R. & Milinkovitch, M. C. The Metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny estimation. Proc. Natl Acad. Sci. USA 99, 10516–10521 (2002)

    Article  CAS  Google Scholar 

  26. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)

    Article  CAS  Google Scholar 

  27. Ruta, M., Coates, M. I. & Quicke, D. L. J. Early tetrapod relationships revisited. Biol. Rev. 78, 251–345 (2003)

    Article  Google Scholar 

  28. Benton, M. J. Vertebrate Palaeontology 2nd edn, 1–452 (Chapman & Hall, London, 1997)

    Google Scholar 

  29. Gao, K. & Shubin, N. H. Earliest known crown-group salamanders. Nature 422, 424–428 (2003)

    Article  CAS  Google Scholar 

Download references


We are grateful to the Kerala Forest Department for collecting permits (to S.D.B.), and to J. Nagaraju (Molecular Genetics Laboratory, CDFD, Hyderabad) for support in sequencing Nasikabatrachus. P. Mardulyn, M. C. Milinkovitch and K. Roelants provided comments on an earlier draft. D. Cannatella, R. Brown, S. Donnellan, R. Drewes, J. Vindum, R. Nussbaum, M. Vences, E. Scott and D. Wake provided tissue samples. A. Mannaert assisted in the molecular work. D. Adriaens, S. Devaere, F. Verschoten and A. Herrel were supportive in osteological analyses. J. Thorne made his software available. M. Coates provided suggestions for calibration.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Franky Bossuyt.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information


Supplementary Information: This file contains measurements on the holotype, notes on amplexus, discussion on convergence, list of species included in the phylogenetic analyses, uncorrected ("p") distance matrix for mt- and nuDNA, Bayesian analyses of individual genes, and divergence time estimates. (PDF 861 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biju, S., Bossuyt, F. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425, 711–714 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing