Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic control of ferroelectric polarization

Abstract

The magnetoelectric effect—the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field—was first presumed to exist by Pierre Curie1, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2–4). More recently, related studies on magnetic ferroelectrics5,6,7,8,9,10,11,12,13,14 have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility15, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance of ferroelectricity below a lock-in transition temperature in TbMnO3.
Figure 2: Electric polarization flop induced by magnetic fields in TbMnO3.
Figure 3: Magnetocapacitance and magnetoelectric effects in TbMnO3.
Figure 4: Temperature versus magnetic field phase diagram for TbMnO3 for magnetic field applied along the b axis.

Similar content being viewed by others

References

  1. Curie, P. Sur la symétrie dans les phénomenes physiques, symétrie d'un champ électrique et d'un champ magnétique. J. Phys. 3(Ser. III), 393–415 (1894)

    MATH  Google Scholar 

  2. O'Dell,, T. H. The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970)

    Google Scholar 

  3. Freeman, A. J. & Schmid, H. (eds) Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1975)

  4. Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Usp. Fiz. Nauk. 137, 415–448 (1982); also Sov. Phys. Usp. 25, 475–493 (1982)

    Article  CAS  Google Scholar 

  5. Huang, Z. J., Cao, Y., Sun, Y., Xue, Y. Y. & Chu, C. W. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3 . Phys. Rev. B 56, 2623–2626 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Iwata, N. & Kohn, K. Dielectric anomalies at magnetic transitions of hexagonal rare earth manganese oxides RMnO3 . J. Phys. Soc. Jpn 67, 3318–3319 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001)

    Article  ADS  Google Scholar 

  8. Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Hanamura, E., Hagita, K. & Tanabe, Y. Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3 . J. Phys. Condens. Matter 14, L103–L109 (2003)

    Article  Google Scholar 

  10. Zhong, C. G. & Jiang, Q. The study of the coupling mechanism between antiferromagnetic and ferroelectric ordering and thermodynamic properties in ferroelectromagnets. J. Phys. Condens. Matter 14, 8605–8612 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Seshadri, R. & Hill, N. A. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3 . Chem. Mater. 13, 2892–2899 (2001)

    Article  CAS  Google Scholar 

  12. Moreira dos Santos, A. et al. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3 . Solid State Commun. 122, 49–52 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3 . Phys. Rev. B 67, 180401(R) (2003)

    Article  ADS  Google Scholar 

  14. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Wood, V. E. & Austin, A. E. Possible applications for magnetoelectric materials. Int. J. Magn. 5, 303–315 (1974)

    CAS  Google Scholar 

  16. Quezel, S., Tcheou, F., Rossat-Mignod, J., Quezel, G. & Roudaut, E. Magnetic structure of the perovskite-like compound TbMnO3 . Physica B 86–88, 916–918 (1977)

    Article  Google Scholar 

  17. Kimura, T. et al. Distorted perovskite with e g1 configuration as a frustrated spin system. Phys. Rev. B 68, 060403(R) (2003)

    Article  ADS  Google Scholar 

  18. Greenwald, S. & Smart, J. S. Deformations in the crystal structures of anti-ferromagnetic compounds. Nature 166, 523–524 (1950)

    Article  ADS  CAS  Google Scholar 

  19. Smart, J. S. & Greenwald, S. Crystal structure transitions in antiferromagnetic compounds at the Curie temperature. Phys. Rev. 82, 113–114 (1951)

    Article  ADS  CAS  Google Scholar 

  20. Bohr, J. et al. Diffraction studies of rare earth metals and superlattices. Physica B 159, 93–105 (1989)

    Article  ADS  CAS  Google Scholar 

  21. Bohr, J., Gibbs, D. & Huang, K. X-ray-diffraction studies of the magnetic state of thulium. Phys. Rev. B 42, 4322–4328 (1990)

    Article  ADS  CAS  Google Scholar 

  22. Blinc, R. & Levanyuk, A. P. Incommensurate Phases in Dielectrics 1. Fundamentals (North-Holland, Amsterdam, 1986)

    Google Scholar 

  23. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Usp. Fiz. Nauk. 112, 561–589 (1974); also Sov. Phys. Usp. 17, 199–214 (1974)

    Article  CAS  Google Scholar 

  24. Sawada, S., Shiroishi, Y., Yamamoto, A., Takashige, M. & Matsuo, M. Ferroelectricity in Rb2ZnCl4 . J. Phys. Soc. Jpn 43, 2099–2100 (1977)

    Article  ADS  CAS  Google Scholar 

  25. Aiki, K., Hukuda, K. & Matumura, O. Ferroelectricity in K2SeO4 . J. Phys. Soc. Jpn 26, 1064 (1969)

    Article  ADS  CAS  Google Scholar 

  26. Goldsmith, G. J. & White, J. G. Ferroelectric behavior in thiourea. J. Chem. Phys. 31, 1175–1187 (1959)

    Article  ADS  CAS  Google Scholar 

  27. Bouree, J. E. & Hammann, J. Mise en évidence expérimentale des effets de forme dans l'orthoferrite de terbium. J. Phys. 36, 391–397 (1975)

    Article  CAS  Google Scholar 

  28. Bidaux, R., Bouree, J. E. & Hammann, J. Diagramme de phase de l'orthoferrite de terbium en présence d'un champ magnétique. J. Phys. 36, 803–809 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kohn, K. Ohgushi, S. Ishihara and A. P. Ramirez for discussions, and Y. Wakabayashi for help with X-ray diffraction measurements. This work was partly supported by KAKENHI from the MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kimura.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Goto, T., Shintani, H. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003). https://doi.org/10.1038/nature02018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing