Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The speed of information in a ‘fast-light’ optical medium

Abstract

One consequence of the special theory of relativity is that no signal can cause an effect outside the source light cone, the space-time surface on which light rays emanate from the source1. Violation of this principle of relativistic causality leads to paradoxes, such as that of an effect preceding its cause2. Recent experiments on optical pulse propagation in so-called ‘fast-light’ media—which are characterized by a wave group velocity υg exceeding the vacuum speed of light c or taking on negative values3—have led to renewed debate about the definition of the information velocity υi. One view is that υi = υg (ref. 4), which would violate causality, while another is that υi = c in all situations5, which would preserve causality. Here we find that the time to detect information propagating through a fast-light medium is slightly longer than the time required to detect the same information travelling through a vacuum, even though υg in the medium vastly exceeds c. Our observations are therefore consistent with relativistic causality and help to resolve the controversies surrounding superluminal pulse propagation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fast-light pulse propagation.
Figure 2: Transmitting information-encoded optical pulses through a fast-light medium.
Figure 3: Detecting the arrival of new information.

Similar content being viewed by others

References

  1. Jackson, J. D. Classical Electrodynamics 3rd edn, Sec. 11.3.C (John Wiley & Sons, New York, 1999)

    MATH  Google Scholar 

  2. Garrison, J. C., Mitchell, M. W., Chiao, R. Y. & Bolda, E. L. Superluminal signals: causal loop paradoxes revisited. Phys. Lett. A 245, 19–25 (1998)

    Article  CAS  Google Scholar 

  3. Boyd, R. W. & Gauthier, D. J. in Progress in Optics (ed. Wolf, E.) Vol. 43, 497–530, Ch. 6 (Elsevier, Amsterdam, 2002)

    Google Scholar 

  4. Nimtz, G. & Gaibel, A. Basics of superluminal signals. Ann. Phys. 11, 163–171 (2002)

    Article  CAS  Google Scholar 

  5. Chiao, R. Y. & Steinberg, A. M. in Progress in Optics (ed. Wolf, E.) Vol. 37, 345–405, Ch. 6 (Elsevier Science, Amsterdam, 1997)

    Google Scholar 

  6. Agrawal, G. P. Nonlinear Fiber Optics 3rd edn, Ch. 1 (Academic, San Diego, 2001)

    MATH  Google Scholar 

  7. Born, M. & Wolf, E. Principles of Optics 7th edn, Sec. 2.3.4 (Cambridge Univ. Press, Cambridge, 1999)

    Book  Google Scholar 

  8. Garrett, C. G. B. & McCumber, D. E. Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A. 1, 305–313 (1970)

    Article  Google Scholar 

  9. Brillouin, L. Wave Propagation and Group Velocity Ch. I (Academic, New York, 1960)

    MATH  Google Scholar 

  10. Sommerfeld, A. Über die fortpflanzung des lichtes in dispergierenden medien. Ann. Phys. 44, 177–202 (1914); English translation available in Brillouin, L. Wave Propagation and Group Velocity Ch. II (Academic, New York, 1960).

  11. Brillouin, L. Über die fortpflanzung des lichtes in dispergierenden medien. Ann. Phys. 44, 203–240 (1914); English translation available in Brillouin, L. Wave Propagation and Group Velocity Ch. III (Academic, New York, 1960).

  12. Chu, C. & Wong, S. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738–741 (1982)

    Article  CAS  Google Scholar 

  13. Ségard, B. & Macke, B. Observation of negative velocity pulse propagation. Phys. Lett. 109, 213–216 (1985)

    Article  Google Scholar 

  14. Peatross, J., Glasgow, S. A. & Ware, M. Average energy flow of optical pulses in dispersive media. Phys. Rev. Lett. 84, 2370–2373 (2000)

    Article  CAS  Google Scholar 

  15. Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000)

    Article  CAS  Google Scholar 

  16. Akulshin, A. M., Cimmino, A. & Opat, G. I. Negative group velocity of a light pulse in cesium vapor. Quantum Electron. 32, 567–569 (2002)

    Article  CAS  Google Scholar 

  17. Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003)

    Article  CAS  Google Scholar 

  18. Cao, H., Dogariu, A. & Wang, L. J. Negative group delay and pulse compression in superluminal pulse propagation. IEEE J. Sel. Top. Quantum Electron. 9, 52–58 (2003)

    Article  CAS  Google Scholar 

  19. Macke, B. & Ségard, B. Propagation of light-pulses at a negative group velocity. Eur. Phys. J. D 23, 125–141 (2003)

    Article  CAS  Google Scholar 

  20. Steinberg, A. M. & Chiao, R. Y. Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A. 49, 2071–2075 (1994)

    Article  CAS  Google Scholar 

  21. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Article  CAS  Google Scholar 

  22. Stenner, M. D. & Gauthier, D. J. Pump-beam-instability limits to Raman-gain-doublet “fast-light” pulse propagation. Phys. Rev. A. 67, 063801 (2003)

    Article  Google Scholar 

  23. Diener, G. Superluminal group velocities and information transfer. Phys. Lett. A 223, 327–331 (1996)

    Article  MathSciNet  CAS  Google Scholar 

  24. Wynne, K. Causality and the nature of information. Opt. Commun. 209, 85–100 (2002)

    Article  CAS  Google Scholar 

  25. Mitchell, M. W. & Chiao, R. Y. Negative group delay and “fronts” in a causal system: An experiment with very low frequency bandpass filters. Phys. Lett. A 230, 133–138 (1999)

    Article  Google Scholar 

  26. Nakanishi, T., Sugiyama, K. & Kitano, K. Demonstration of negative group delays in a simple electronic circuit. Am. J. Phys. 70, 1117–1121 (2002)

    Article  Google Scholar 

  27. Solli, D., Chiao, R. Y. & Hickmann, J. M. Superluminal effects and negative group delays in electronics, and their applications. Phys. Rev. E 66, 056601 (2002)

    Article  Google Scholar 

  28. Kuzmich, A., Dogariu, A., Wang, L. J., Milonni, P. W. & Chiao, R. Y. Signal velocity, causality, and quantum noise in superluminal light pulse propagation. Phys. Rev. Lett. 86, 3925–3929 (2001)

    Article  CAS  Google Scholar 

  29. Caves, C. M. & Drummond, P. Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66, 481–537 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.D.S. and D.J.G. acknowledge discussions with M. Gehm and J. Thomas, the loan of an argon-ion pump laser from J. Thomas, and the financial support of the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Gauthier.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenner, M., Gauthier, D. & Neifeld, M. The speed of information in a ‘fast-light’ optical medium. Nature 425, 695–698 (2003). https://doi.org/10.1038/nature02016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02016

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing