Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-performance thin-film transistors using semiconductor nanowires and nanoribbons

Abstract

Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics1,2. The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost3,4. Current polycrystalline-Si TFT technology is difficult to implement on plastics because of the high process temperatures required1,2. Amorphous-Si and organic semiconductor5,6 TFTs, which can be processed at lower temperatures, but are limited by poor carrier mobility. As a result, applications that require even modest computation, control or communication functions on plastics cannot be addressed by existing TFT technology. Alternative semiconductor materials7,8 that could form TFTs with performance comparable to or better than polycrystalline or single-crystal Si, and which can be processed at low temperatures over large-area plastic substrates, should not only improve the existing technologies, but also enable new applications in flexible, wearable and disposable electronics. Here we report the fabrication of TFTs using oriented Si nanowire thin films or CdS nanoribbons as semiconducting channels. We show that high-performance TFTs can be produced on various substrates, including plastics, using a low-temperature assembly process. Our approach is general to a broad range of materials including high-mobility materials (such as InAs or InP).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nanowire TFT fabrication.
Figure 2: p-channel Si NW-TFT and n-channel CdS nanoribbon TFT.
Figure 3: NW-TFTs on plastic.
Figure 4: Complementary inverter constructed from NW and nanoribbon TFTs.

References

  1. 1

    Madelung, O. (ed.) Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000)

  2. 2

    Ucjikoga, S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. MRS Bull. 27, 881–886 (2002)

    Article  Google Scholar 

  3. 3

    Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastics sheet of electronics and microencapsulated electronic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lee, M. J., Judge, C. P. & Wright, S. W. Thin film transistors for displays on plastic substrate. Solid State Electron. 44, 1431–1434 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Dimitrakopoulos, C. D. & Mascaro, D. J. Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Ridley, B. A., Nivi, B. & Jacobson, J. M. All-inorganic field effect transistors fabricated by printing. Science 286, 746–749 (1999)

    CAS  Article  Google Scholar 

  8. 8

    Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Cui, Y., Zhong, Z., Wang, D., Wang, W. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Duan, X., Huang, Y., Cui, Y. & Lieber, C. M. in Molecular Nanoelectronics (eds Reed, M. A. & Lee, T.) (American Scientific Publishers, Stevenson Ranch, 2003)

    Google Scholar 

  11. 11

    Tans, S. J., Verschueren, R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Javel, A. et al. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Rosenblatt, S. et al. High-performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. & Lieber, C. M. Diameter-controlled synthesis of single crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Tao, A. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. DOI:10.102/n1344209 (published online 02 August 2003)

  17. 17

    Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. DOI:10.102/nl0345062 (published online 05 August 2003)

  18. 18

    Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  19. 19

    Hastas, N. A., Dimitriadis, C. A., Brini, J. & Kamarinos, G. Hot-carrier-induced degradation in short p-channel nonhydrogenated polysilicon thin-film transistors. IEEE Trans. Electron Devices 49, 1552–1557 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Mizuno, T., Sugiyama, N., Kurobe, A. & Takagi, S. Advanced SOI p-MOSFET with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology. IEEE Trans. Electron Devices 48, 1612–1618 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Yeh, C., Chen, T., Gudmundsson, J. T. & Lieberman, M. A. Hydrogenation of polysilicon thin-film transistors in a planar inductive H2/Ar discharge. RON Device Lett. 20, 223–225 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 420, 57–61 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Duan, X., Huang, Y., Argarawal, R. & Lieber, C. M. Single nanowire injection laser. Nature 421, 241–245 (2003)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Weimer, P. K. The TFT-a new thin-film transistors. Proc. IEEE 56, 1462–1465 (1962)

    Google Scholar 

  26. 26

    Madelung, O. (ed.) Landolt-Bornstein New Series Vol. III/22a, Semiconductors: Intrinsic properties of Group IV Elements and III–V and II–VI and I–VII Compounds 407 (Springer, Berlin, 1987)

  27. 27

    Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, Cambridge, 1989)

    Google Scholar 

  28. 28

    Duan, X., Huang, Y., Wang, J., Cui, Y. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Xia, Y., Qin, D. & Whitesides, G. M. Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometer-sized features. Adv. Mater. 8, 1015–1017 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Bock and C. Chow for insights and support; D. Stumbo for discussions and opinions on the manuscript; Y. Pan and H. Liu for supplying Si/SiNx wafers; and C. M. Lieber, H. Park and P. McEuen for discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, X., Niu, C., Sahi, V. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003). https://doi.org/10.1038/nature01996

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing