Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum critical behaviour in a high-Tc superconductor

Abstract

Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted1,2, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems3 and in the high-transition temperature (high-Tc) copper oxide superconductors4, but the reality and the physical nature of such a phase transition are still debated5,6,7. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-Tc superconductors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties along the copper-oxygen planes of Bi2Sr2Ca0.92Y0.08Cu2O8+δ for a selected number of temperatures.
Figure 2: Temperature/frequency scaling behaviour of the real part of the optical conductivity of Bi2Sr2Ca0.92Y0.08Cu2O8+δ.
Figure 3: Universal power law of the optical conductivity and the phase angle spectra of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ.
Figure 4: Phase of σ(ω) of Bi2.23Sr1.9Ca0.96Cu2O8+δ at various doping levels.

References

  1. Varma, C. M., Nussinov, Z. & van Saarloos, W. Singular or non-Fermi Liquids. Phys. Rep. 361, 267–417 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999)

    MATH  Google Scholar 

  3. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Tallon, J. L. & Loram, J. W. The doping dependence of T*—what is the real high-T c phase diagram? Physica C 349, 53–68 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-Tc superconductor. Nature 416, 610–613 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Mook, H. A. et al. Magnetic order in YBa2Cu3O6+x superconductors. Phys. Rev. B 66, 144513 (2002)

    Article  ADS  Google Scholar 

  8. Quijada, M. A. et al. Anisotropy in the ab-plane optical properties of Bi2Sr2CaCu2O8 single-domain crystals. Phys. Rev. B 60, 14917–14934 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Puchkov, A. V., Basov, D. N. & Timusk, T. The pseudogap state in high-Tc superconductors: An infrared study. J. Phys. 8, 10049–10082 (1996)

    CAS  Google Scholar 

  10. Santander-Syro, A. F. et al. Absence of a loss of in-plane infrared spectral weight in the pseudogap regime of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 88, 097005–097008 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Littlewood, P. B. & Varma, C. M. Phenomenology of the normal and superconducting states of a marginal Fermi liquid. J. Appl. Phys. 69, 4979–4984 (1991)

    Article  ADS  Google Scholar 

  12. Prelovsek, P. On the universal optical conductivity and single-particle relaxation in cuprates. Europhys. Lett. 53, 228–232 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Ioffe, L. B. & Millis, A. J. Zone-diagonal-dominated transport in high-T c cuprates. Phys. Rev. B 58, 11631–11637 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Schlesinger, Z. et al. Superconducting energy gap and normal-state conductivity of a single-domain YBa2Cu3O7 crystal. Phys. Rev. Lett. 65, 801–804 (1990)

    Article  ADS  CAS  Google Scholar 

  15. El Azrak, A. et al. Infrared properties of Yba2Cu3O7 and Bi2Sr2Can-1CunO2n+4 thin films. Phys. Rev. B 49, 9846–9856 (1994)

    Article  ADS  CAS  Google Scholar 

  16. Molegraaf, H. J. A., Presura, C., van der Marel, D., Kes, P. H. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ . Science 295, 2239–2241 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Li, M., van der Beek, C. J., Konczykowski, M., Menovsky, A. A. & Kes, P. H. Superconducting properties of strongly underdoped Bi2Sr2CaCu2O8+x single crystals. Phys. Rev. B 66, 024502 (2002)

    Article  ADS  Google Scholar 

  18. Anderson, P. W. Infrared conductivity of cuprate metals: Detailed fit using Luttinger-liquid theory. Phys. Rev. B 55, 11785–11788 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Bernhoeft, N. An analysis of the dynamical magnetic susceptibility in non-Fermi liquids. J. Phys. Condens. Matter 13, R771–R816 (2001)

    Article  ADS  CAS  Google Scholar 

  20. van der Marel, D. Anisotropy of the optical conductivity of high Tc cuprates. Phys. Rev. B 60, R765–R768 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Liu, Y. & Goldman, A. M. Superconductor-insulator transitions in two dimensions. Mod. Phys. Lett. B 8, 277–309 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Fisher, M. P. A., Grinstein, G. & Girvin, S. M. Presence of a quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition. Phys. Rev. Lett. 64, 587–590 (1990)

    Article  ADS  CAS  Google Scholar 

  23. Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714–8733 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Tajima, S., Gu, D. G., Miyamoto, S., Odagawa, A. & Koshizuka, N. Optical evidence for strong anisotropy in the normal and superconducting states in Bi2Sr2CaCu2O8+z . Phys. Rev. B 48, 16164–16167 (1993)

    Article  ADS  CAS  Google Scholar 

  25. Aspnes, D. E. Approximate solution of ellipsometric equations for optically biaxial crystals. J. Opt. Soc. Am. 70, 1275–1277 (1980)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. M. Varma, P. Prelovsek, C. Pepin, S. Sachdev and A. Tsvelik for comments during the preparation of this work, and N. Kaneko for technical assistance. This investigation was supported by the Netherlands Foundation for Fundamental Research on Matter (FOM) with financial aid from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). The crystal growth work at Stanford University was supported by the Department of Energy's Office of Basic Energy Sciences, Division of Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. van der Marel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marel, D., Molegraaf, H., Zaanen, J. et al. Quantum critical behaviour in a high-Tc superconductor. Nature 425, 271–274 (2003). https://doi.org/10.1038/nature01978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01978

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing