Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fermi-liquid breakdown in the paramagnetic phase of a pure metal

Abstract

Fermi-liquid theory1 (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point—a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model2,3,4,5. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model—not in a narrow crossover region close to a quantum critical point6,7 where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems8,9,31. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dependence on temperature of the electrical resistivity of MnSi.
Figure 2: Dependence on temperature of the low-temperature resistivity of MnSi at 15.0 kbar and for different conditions of applied magnetic field.
Figure 3: Low-temperature resistivity exponent as a function of pressure and magnetic field.
Figure 4: Illustration of the temperature-pressure phase diagram of MnSi predicted by the weakly or nearly ferromagnetic Fermi-liquid model (NFFL).
Figure 5: Dependence on temperature of the electrical resistivity of MnSi at subkelvin temperatures.

References

  1. 1

    Landau, L. D. Collected Papers (ed. Ter Haas, D.) Ch. 90, 91 (Pergamon, Oxford, 1965)

    Google Scholar 

  2. 2

    Murata, K. K. & Doniach, S. Theory of magnetic fluctuations in itinerant ferromagnets. Phys. Rev. Lett. 29, 285–288 (1972)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Moriya, T. & Kawabata, A. Effect of spin fluctuations in itinerant electron ferromagnetism. J. Phys. Soc. Jpn 34, 639–651 (1973)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ramakrishnan, T. V. Microscopic theory of spin fluctuations in itinerant electron ferromagnets. Phys. Rev. B 10, 4014–4024 (1974)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Laughlin, R. B. et al. The quantum criticality conundrum. Adv. Phys. 50, 361–365 (2001)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Anderson, P. W. In praise of unstable fixed points: The way things actually work. Physica B 318, 28–32 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Schröder, A. et al., Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000)

    ADS  Article  Google Scholar 

  9. 9

    Millis, A. J. Whither correlated electron theory? Physica B 312–313, 1–6 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Pfleiderer, C., Julian, S. R. & Lonzarich, G. G. Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bloch, D., Voiron, J., Jaccarino, V. & Wernick, J. H. The high field-high pressure magnetic properties of MnSi. Phys. Lett. 51, 259–291 (1975)

    Article  Google Scholar 

  12. 12

    Lebech, B. in Recent Advances in Magnetism of Transition Metal Compounds eds Kotani, A. & Suzuki, N.) 167–178 (World Scientific, Singapore, 1993)

    Book  Google Scholar 

  13. 13

    Taillefer, L., Lonzarich, G. G. & Strange, P. The band magnetism of MnSi. J. Magn. Magn. Mater. 54–57, 957–958 (1986)

    ADS  Article  Google Scholar 

  14. 14

    Thompson, J. D., Fisk, Z. & Lonzarich, G. G. Perspective on heavy-electron and Kondo-lattice systems from high pressure studies. Physica B 161, 317–323 (1989)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Thessieu, C. et al. Field dependence of the magnetic quantum phase transition in MnSi. J. Phys. Condens. Matter 9, 6677–6687 (1997)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Thessieu, C., Ishida, K., Kitaoka, Y., Asayama, K. & Lapertot, G. Pressure effect on MnSi: An NMR study. J. Magn. Magn. Mater. 177–181, 609–610 (1998)

    ADS  Article  Google Scholar 

  18. 18

    Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985)

    Book  Google Scholar 

  19. 19

    Millis, A. J. Effect of a non-zero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Pfleiderer, C. Non-Fermi liquid puzzle of MnSi at high pressure Physica B 328 (1–2), 100–104 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Belitz, D., Kirkpatrick, T. R., Narayanan, R. & Vojta, T. Transport anomalies and marginal-Fermi-liquid effects at a quantum critical point. Phys. Rev. Lett. 85, 4602–4605 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Varma, C. M., Nussinov, Z. & van Saarloos, W. Singular or non-Fermi liquids. Phys. Lett. 361, 267–417 (2002)

    MathSciNet  CAS  MATH  Google Scholar 

  23. 23

    Lonzarich, G. G. & Taillefer, L. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. J. Phys. C 18, 4339–4371 (1985)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Ishikawa, Y., Noda, Y., Uemura, Y. J., Majkrzak, C. F. & Shirane, G. Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31, 5884–5893 (1985)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Vojta, T. & Sknepnek, R. Quantum phase transition of itinerant helimagnets. Phys. Rev. B 64, 052404 (2001)

    ADS  Article  Google Scholar 

  26. 26

    Altshuler, B. L. & Aronov, A. G. in Electron-Electron Interactions in Disordered Systems (eds Pollak, M. & Efros, A. L.) 1–153 (Modern Problems in Condensed Matter Sciences, North Holland, Amsterdam, 1985)

    Book  Google Scholar 

  27. 27

    Langer, J. S. Statistical theory of the decay of metastable states. Ann. Phys. 54, 258–275 (1969)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Rivadulla, F., Zhou, J.-S. & Goodenough, J. B. Electron scattering near an itinerant to localized electronic transition. Phys. Rev. B 67, 165110 (2003)

    ADS  Article  Google Scholar 

  29. 29

    Walker, I. R. Nonmagnetic piston-cylinder pressure cell for use at 35 kbar and above. Rev. Sci. Instrum. 70, 3402–3412 (1999)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Yamada, H. & Terao, K. Itinerant-electron metamagnetism of MnSi at high pressure. Phys. Rev. B 59, 9342–9347 (1999)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Custers, J. et al., The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the following for discussions; B. Altshuler, S. Barakat, S. Brown, P. Coleman, J. Flouquet, R. K. W. Haselwimmer, D. Khmelnistkii, A. J. Millis, P. Monthoux, P. Niklowitz, C. Pfleiderer, T. V. Ramakrishnan, S. S. Saxena, B. Simon, M. Turlakov and C. M. Varma. The work was supported by the UK EPSRC and the EU FERLIN programme. N.D.-L. acknowledges support from FCAR of Quebec, NSERC of Canada, and Trinity College and Peterhouse, Cambridge University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Doiron-Leyraud.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doiron-Leyraud, N., Walker, I., Taillefer, L. et al. Fermi-liquid breakdown in the paramagnetic phase of a pure metal. Nature 425, 595–599 (2003). https://doi.org/10.1038/nature01968

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing