Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation


Protein modification by ubiquitin is emerging as a signal for various biological processes in eukaryotes, including regulated proteolysis, but also for non-degradative functions such as protein localization, DNA repair and regulation of chromatin structure1,2,3,4. A small ubiquitin-related modifier (SUMO) uses a similar conjugation system that sometimes counteracts the effects of ubiquitination5. Ubiquitin and SUMO compete for modification of proliferating cell nuclear antigen (PCNA), an essential processivity factor for DNA replication and repair6. Whereas multi-ubiquitination is mediated by components of the RAD6 pathway and promotes error-free repair, SUMO modification is associated with replication6,7,8,9. Here we show that RAD6-mediated mono-ubiquitination of PCNA activates translesion DNA synthesis by the damage-tolerant polymerases η and ζ in yeast. Moreover, polymerase ζ is differentially affected by mono-ubiquitin and SUMO modification of PCNA. Whereas ubiquitination is required for damage-induced mutagenesis, both SUMO and mono-ubiquitin contribute to spontaneous mutagenesis in the absence of DNA damage. Our findings assign a function to SUMO during S phase and demonstrate how ubiquitin and SUMO, by regulating the accuracy of replication and repair, contribute to overall genomic stability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: PCNA modifications differentially affect individual branches of the RAD6 pathway.
Figure 2: Pol ζ-dependent DNA-damage-induced mutagenesis requires mono-ubiquitination of PCNA.
Figure 3: Model of the interplay between the SUMO and ubiquitin conjugation systems and their consequences for DNA replication and repair.


  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998)

    CAS  Google Scholar 

  2. Hicke, L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9, 107–112 (1999)

    CAS  Article  Google Scholar 

  3. Conaway, R. C., Brower, C. S. & Conaway, J. W. Emerging roles of ubiquitin in transcription regulation. Science 296, 1254–1258 (2002)

    ADS  CAS  Article  Google Scholar 

  4. Ulrich, H. D. Degradation or maintenance: actions of the ubiquitin system on eukaryotic chomatin. Eukaryot. Cell 1, 1–10 (2002)

    CAS  Article  Google Scholar 

  5. Melchior, F. SUMO—nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626 (2000)

    CAS  Article  Google Scholar 

  6. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Broomfield, S., Chow, B. L. & Xiao, W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl Acad. Sci. USA 95, 5678–5683 (1998)

    ADS  CAS  Article  Google Scholar 

  8. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999)

    CAS  Article  Google Scholar 

  9. Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000)

    CAS  Article  Google Scholar 

  10. Lawrence, C. W. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: What does it do, and how does it do it? Bioessays 16, 253–258 (1994)

    CAS  Article  Google Scholar 

  11. Bailly, V., Lauder, S., Prakash, S. & Prakash, L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272, 23360–23365 (1997)

    CAS  Article  Google Scholar 

  12. Jentsch, S., McGrath, J. P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987)

    ADS  CAS  Article  Google Scholar 

  13. Sung, P., Prakash, S. & Prakash, L. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc. Natl Acad. Sci. USA 87, 2695–2699 (1990)

    ADS  CAS  Article  Google Scholar 

  14. Johnson, E. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001)

    CAS  Article  Google Scholar 

  15. McDonald, J. P., Levine, A. S. & Woodgate, R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147, 1557–1568 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Prakash, S. & Prakash, L. Translesion DNA synthesis in eukaryotes: A one- or two-polymerase affair. Genes Dev. 16, 1872–1883 (2002)

    CAS  Article  Google Scholar 

  17. Haracska, L., Kondratick, C. M., Unk, I., Prakash, S. & Prakash, L. Interaction with PCNA is essential for yeast DNA Polymerase η function. Mol. Cell 8, 407–415 (2001)

    CAS  Article  Google Scholar 

  18. Lawrence, C. W. & Maher, V. M. Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Phil. Trans. R. Soc. Lond. B 356, 41–46 (2001)

    CAS  Article  Google Scholar 

  19. Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265–1273 (1995)

    CAS  Article  Google Scholar 

  20. Cassier-Chauvat, C. & Fabre, F. A similar defect in UV-induced mutagenesis conferred by the rad6 and rad18 mutations of Saccharomyces cerevisiae. Mutat Res. 254, 247–253 (1991)

    CAS  Article  Google Scholar 

  21. Lawrence, C. W. & Christensen, R. B. UV-mutagenesis in radiation-sensitive strains of yeast. Genetics 82, 207–232 (1976)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hastings, P. J., Quah, S.-K. & Von Borstel, R. C. Spontaneous mutation by mutagenic repair of spontaneous lesions. Nature 264, 719–722 (1976)

    ADS  CAS  Article  Google Scholar 

  23. Morrison, A. et al. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a non-essential DNA polymerase. J. Bacteriol. 171, 5659–5667 (1989)

    CAS  Article  Google Scholar 

  24. Quah, S.-K., Von Borstel, R. C. & Hastings, P. J. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics 96, 819–839 (1980)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brusky, J., Zhu, Y. & Xiao, W. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr Genet. 37, 168–174 (2000)

    CAS  Article  Google Scholar 

  26. Li, S.-J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999)

    ADS  CAS  Article  Google Scholar 

  27. Li, S.-J. & Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20, 2367–2377 (2000)

    CAS  Article  Google Scholar 

  28. Warbrick, E. The puzzle of PCNA's many partners. Bioessays 22, 997–1006 (2000)

    CAS  Article  Google Scholar 

  29. Lea, D. E. & Coulson, C. A. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–285 (1949)

    CAS  Article  Google Scholar 

  30. Von Borstel, R. C. et al. Topical reversion at the HIS1 locus of Saccharomyces cerevisiae: a tale of three mutants. Genetics 148, 1647–1654 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank M. Ludwig for technical assistance; R. Viana for construction of the His6-POL30 vector used for the Supplementary Information; M. Hochstrasser for the ulp1ts and ulp2 mutants; C. Hoege and S. Jentsch for the anti-PCNA antibody used for the Supplementary Information; and W. Kramer for comments on the manuscript. R. Kahmann is acknowledged for generous support. H.D.U. is supported by grants from the German Ministry for Education and Research, Deutsche Forschungsgemeinschaft and the German–Israeli Foundation for Scientific Research and Development.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Helle D. Ulrich.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stelter, P., Ulrich, H. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing