Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cellular networks underlying human spatial navigation

Abstract

Place cells of the rodent hippocampus constitute one of the most striking examples of a correlation between neuronal activity and complex behaviour in mammals1,2. These cells increase their firing rates when the animal traverses specific regions of its surroundings, providing a context-dependent map of the environment3,4,5. Neuroimaging studies implicate the hippocampus and the parahippocampal region in human navigation6,7,8. However, these regions also respond selectively to visual stimuli9,10,11,12,13. It thus remains unclear whether rodent place coding has a homologue in humans or whether human navigation is driven by a different, visually based neural mechanism. We directly recorded from 317 neurons in the human medial temporal and frontal lobes while subjects explored and navigated a virtual town. Here we present evidence for a neural code of human spatial navigation based on cells that respond at specific spatial locations and cells that respond to views of landmarks. The former are present primarily in the hippocampus, and the latter in the parahippocampal region. Cells throughout the frontal and temporal lobes responded to the subjects' navigational goals and to conjunctions of place, goal and view.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taxi driver game.
Figure 2: Place-responsive cells.
Figure 3: View-responsive cells.
Figure 4: Goal-responsive cells.

Similar content being viewed by others

References

  1. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971)

    Article  CAS  Google Scholar 

  2. Muller, R. U., Kubie, J. L. & Ranck, J. B. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950 (1987)

    Article  CAS  Google Scholar 

  3. O'Keefe, J. & Conway, D. H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978)

    Article  CAS  Google Scholar 

  4. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987)

    Article  CAS  Google Scholar 

  5. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1998)

    Article  Google Scholar 

  7. Aguirre, G. K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–383 (1996)

    Article  Google Scholar 

  8. Maguire, E. et al. Knowing where and getting there: a human navigation network. Science 280, 921–924 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Epstein, R., Graham, K. & Downing, P. E. Viewpoint specific scene representations in human parahippocampal cortex. Neuron 37, 865–876 (2003)

    Article  CAS  Google Scholar 

  11. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000)

    Article  CAS  Google Scholar 

  12. Cameron, K. A., Yashar, S., Wilson, C. L. & Fried, I. Human hippocampal neurons predict how well word pairs will be remembered. Neuron 30, 289–298 (2001)

    Article  CAS  Google Scholar 

  13. Ojemann, G., Schoenfield-McNeill, J. & Corina, D. Anatomic subdivisions in human temporal cortical neuronal activity related to recent verbal memory. Nature Neurosci. 5, 64–71 (2002)

    Article  CAS  Google Scholar 

  14. Georges-Francois, P., Rolls, E. T. & Robertson, R. G. Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb. Cortex 9, 197–212 (1999)

    Article  CAS  Google Scholar 

  15. Robertson, R. G., Rolls, E. T. & Georges-Francios, P. Head-direction cells in the primate presubiculum. Hippocampus 9, 206–219 (1999)

    Article  CAS  Google Scholar 

  16. Matsumura, N., Nishijo, H., Tamura, R., Eifuku, S. & Ono, T. Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J. Neurosci. 19, 2381–2393 (1999)

    Article  CAS  Google Scholar 

  17. Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995)

    Article  CAS  Google Scholar 

  18. Burgess, N., Maguire, E. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002)

    Article  CAS  Google Scholar 

  19. Quirk, G. J., Muller, R. U., Kubie, J. L. & Ranck, J. B. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci. 12, 1945–1963 (1992)

    Article  CAS  Google Scholar 

  20. Frank, L. M., Brown, E. N. & Wilson, M. A. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000)

    Article  CAS  Google Scholar 

  21. Tolman, E. C. Cognitive maps in rats and men. Psych. Rev. 55, 189–208 (1948)

    Article  CAS  Google Scholar 

  22. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford, 1978)

    Google Scholar 

  23. Caplan, J. B. et al. Human theta oscillations related to sensorimotor integration and spatial learning. J. Neurosci. 23, 4726–4736 (2003)

    Article  CAS  Google Scholar 

  24. Fried, I. et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Technical note. J. Neurosurg. 91, 697–705 (1999)

    Article  CAS  Google Scholar 

  25. Fried, I., MacDonald, K. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997)

    Article  CAS  Google Scholar 

  26. Witter, M. in The Parahippocampal Region: Organization and Role in Cognitive Functions (eds Witter, M. & Wouterlood, F.) 3–19 (Oxford Univ. Press, Oxford, 2002)

    Book  Google Scholar 

  27. Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in Neural Information Processing Systems (eds Hanson, S. J., Cowan, J. D. & Giles, C. L.) 1030–1037 (Morgan-Kaufman, San Mateo, California, 1993)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from NIMH grants to Brandeis University, a NINDS grant to UCLA, and a grant from the Sloan Foundation. We also thank P. Steinmetz, C. Wilson and E. Behnke for technical assistance, and I. Wainwright for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J. Kahana or Itzhak Fried.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekstrom, A., Kahana, M., Caplan, J. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003). https://doi.org/10.1038/nature01964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01964

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing