Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan

Abstract

In diverse organisms, calorie restriction slows the pace of ageing and increases maximum lifespan. In the budding yeast Saccharomyces cerevisiae, calorie restriction extends lifespan by increasing the activity of Sir2 (ref. 1), a member of the conserved sirtuin family of NAD+-dependent protein deacetylases2,3,4,5,6. Included in this family are SIR-2.1, a Caenorhabditis elegans enzyme that regulates lifespan7, and SIRT1, a human deacetylase that promotes cell survival by negatively regulating the p53 tumour suppressor8,9,10. Here we report the discovery of three classes of small molecules that activate sirtuins. We show that the potent activator resveratrol, a polyphenol found in red wine, lowers the Michaelis constant of SIRT1 for both the acetylated substrate and NAD+, and increases cell survival by stimulating SIRT1-dependent deacetylation of p53. In yeast, resveratrol mimics calorie restriction by stimulating Sir2, increasing DNA stability and extending lifespan by 70%. We discuss possible evolutionary origins of this phenomenon and suggest new lines of research into the therapeutic use of sirtuin activators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of resveratrol on the kinetics of recombinant SIRT1.
Figure 2: Effects of polyphenols on Sir2 and S. cerevisiae lifespan.
Figure 3: Resveratrol extends lifespan by mimicking calorie restriction and suppressing rDNA recombination.
Figure 4: STACs stimulate sirtuin activity in human cells.

Similar content being viewed by others

References

  1. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Smith, J. S. et al. A phylogenetically conserved NAD + -dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Tanner, K. G., Landry, J., Sternglanz, R. & Denu, J. M. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA 97, 14178–14182 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735–745 (1999)

    Article  CAS  Google Scholar 

  7. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001)

    Article  CAS  Google Scholar 

  9. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001)

    Article  CAS  Google Scholar 

  10. Langley, E. P. M. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21, 2383–2396 (2002)

    Article  CAS  Google Scholar 

  11. Kenyon, C. A conserved regulatory mechanism for ageing. Cell 105, 165–168 (2001)

    Article  CAS  Google Scholar 

  12. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and Pnc1 govern lifespan extension by calorie restriction in S. cerevisiae. Nature 423, 181–185 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated ageing by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002)

    Article  CAS  Google Scholar 

  14. Masoro, E. J. Caloric restriction and ageing: an update. Exp. Gerontol. 35, 299–305 (2000)

    Article  CAS  Google Scholar 

  15. Glossmann, H., Presek, P. & Eigenbrodt, E. Quercetin inhibits tyrosine phosphorylation by the cyclic nucleotide-independent, transforming protein kinase, pp60src. Naunyn Schmiedebergs Arch. Pharmacol. 317, 100–102 (1981)

    Article  CAS  Google Scholar 

  16. Oliver, J. M., Burg, D. L., Wilson, B. S., McLaughlin, J. L. & Geahlen, R. L. Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J. Biol. Chem. 269, 29697–29703 (1994)

    CAS  PubMed  Google Scholar 

  17. Ferguson, L. R. Role of plant polyphenols in genomic stability. Mutat. Res. 475, 89–111 (2001)

    Article  CAS  Google Scholar 

  18. Middleton, E. Jr, Kandaswami, C. & Theoharides, T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673–751 (2000)

    CAS  PubMed  Google Scholar 

  19. Jang, M. et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220 (1997)

    Article  CAS  Google Scholar 

  20. Stojanovic, S., Sprinz, H. & Brede, O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch. Biochem. Biophys. 391, 79–89 (2001)

    Article  CAS  Google Scholar 

  21. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions. J. Mol. Biol. 12, 88–118 (1965)

    Article  CAS  Google Scholar 

  22. Sinclair, D. A. Paradigms and pitfalls of yeast longevity research. Mech. Ageing Dev. 123, 857–867 (2002)

    Article  CAS  Google Scholar 

  23. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles-a cause of ageing in yeast. Cell 91, 1033–1042 (1997)

    Article  CAS  Google Scholar 

  24. Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999)

    Article  CAS  Google Scholar 

  25. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999)

    Article  CAS  Google Scholar 

  26. Jazwinski, S. M. Metabolic control and gene dysregulation in yeast ageing. Ann. NY Acad. Sci. 908, 21–30 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Dong, Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat. Res. 523–524, 145–150 (2003)

    Article  Google Scholar 

  28. Nicolini, G., Rigolio, R., Miloso, M., Bertelli, A. A. & Tredici, G. Anti-apoptotic effect of trans-resveratrol on paclitaxel-induced apoptosis in the human neuroblastoma SH-SY5Y cell line. Neurosci. Lett. 302, 41–44 (2001)

    Article  CAS  Google Scholar 

  29. Pandey, R. et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036–5055 (2002)

    Article  CAS  Google Scholar 

  30. Soleas, G. J., Diamandis, E. P. & Goldberg, D. M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem. 30, 91–113 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank members of the Sinclair and BIOMOL laboratories for discussions and manuscript preparation, S. Luikenhuis and J. Fox for critical reading of the manuscript, and R. Frye for reagents. This work was supported by the National Institute on Aging and the Harvard-Armenise Foundation. D.S. is an Ellison Medical Research Foundation New Research Scholar. K.B. is a Harvard Medical School Pathology Department MPM Scholar. H.C. is supported by the American Federation of Aging Research, D.L. by a National Eye Institute training grant, and J.W. by an NSF Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sinclair.

Ethics declarations

Competing interests

R. Zipkin is co-founder of BIOMOL and owns equity in the company. All other authors affiliated with BIOMOL are employees of BIOMOL. Sales at BIOMOL may increase as a result of this publication. BIOMOL and Harvard Medical School have filed jointly a provisional patent on this work. D. A. Sinclair, K. T. Howitz, R. E. Zipkin, K. J. Bitterman, Haim Y. Chen and Dudley W. Lamming are expected to be inventors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howitz, K., Bitterman, K., Cohen, H. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003). https://doi.org/10.1038/nature01960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01960

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing