Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase


Many biological processes, such as development and cell cycle progression are tightly controlled by selective ubiquitin-dependent degradation of key substrates. In this pathway, the E3-ligase recognizes the substrate and targets it for degradation by the 26S proteasome. The SCF (Skp1–Cul1–F-box) and ECS (Elongin C–Cul2–SOCS box) complexes are two well-defined cullin-based E3-ligases1,2,3. The cullin subunits serve a scaffolding function and interact through their C terminus with the RING-finger-containing protein Hrt1/Roc1/Rbx1, and through their N terminus with Skp1 or Elongin C, respectively. In Caenorhabditis elegans, the ubiquitin-ligase activity of the CUL-3 complex is required for degradation of the microtubule-severing protein MEI-1/katanin at the meiosis-to-mitosis transition4. However, the molecular composition of this cullin-based E3-ligase is not known. Here we identified the BTB-containing protein MEL-26 as a component required for degradation of MEI-1 in vivo. Importantly, MEL-26 specifically interacts with CUL-3 and MEI-1 in vivo and in vitro, and displays properties of a substrate-specific adaptor. Our results suggest that BTB-containing proteins may generally function as substrate-specific adaptors in Cul3-based E3-ubiquitin ligases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: or543ts embryos display defects in microtubule-dependent processes.
Figure 2: Inactivation of mei-1 by RNAi suppresses the defects in microtubule-dependent processes of or543ts mutant embryos.
Figure 3: MEL-26 interacts with CUL-3 in vivo and in vitro.
Figure 4: MEL-26 displays the properties of an F-box protein.

Similar content being viewed by others


  1. Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381–386 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Pintard, L. et al. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13, 911–921 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Zollman, S., Godt, D., Prive, G. G., Couderc, J. L. & Laski, F. A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl Acad. Sci. USA 91, 10717–10721 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurz, T. et al. Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295, 1294–1298 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Clark-Maguire, S. & Mains, P. E. Localization of the mei-1 gene product of Caenorhabditis elegans, a meiotic-specific spindle component. J. Cell Biol. 126, 199–209 (1994)

    Article  CAS  PubMed  Google Scholar 

  8. Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. & Mains, P. E. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14, 1072–1084 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mains, P. E., Kemphues, K. J., Sprunger, S. A., Sulston, I. A. & Wood, W. B. Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126, 593–605 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dow, M. R. & Mains, P. E. Genetic and molecular characterization of the Caenorhabditis elegans gene, mel-26, a postmeiotic negative regulator of mei-1, a meiotic-specific spindle component. Genetics 150, 119–128 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark-Maguire, S. & Mains, P. E. mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136, 533–546 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Salama, S. R., Hendricks, K. B. & Thorner, J. G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol. Cell. Biol. 14, 7953–7966 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galan, J. M. & Peter, M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl Acad. Sci. USA 96, 9124–9129 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wirbelauer, C. et al. The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J. 19, 5362–5375 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, P. & Howley, P. M. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell 2, 571–580 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Wolf, D. A., McKeon, F. & Jackson, P. K. F-box/WD-repeat proteins pop1p and Sud1p/Pop2p form complexes that bind and direct the proteolysis of cdc18p. Curr. Biol. 9, 373–376 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Seibert, V. et al. Combinatorial diversity of fission yeast SCF ubiquitin ligases by homo- and heterooligomeric assemblies of the F-box proteins Pop1p and Pop2p. BMC Biochem. 3, 1–15 (2002)

    Article  Google Scholar 

  18. Robinson, D. N. & Cooley, L. Drosophila kelch is an oligomeric ring canal actin organizer. J. Cell Biol. 138, 799–810 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soltysik-Espanola, M. et al. Characterization of Mayven, a novel actin-binding protein predominantly expressed in brain. Mol. Biol. Cell 10, 2361–2375 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nature Genet. 26, 370–374 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscience, New York, 1991)

    Google Scholar 

  23. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Breeden, L. K. N. Regulation of the yeast HO gene. Cold Spring Harb. Symp. Quant. Biol. 50, 643–650 (1985)

    Article  CAS  PubMed  Google Scholar 

  25. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature advance online publication; 3 September 2003 (doi:10.1038/nature01985)

Download references


We are grateful to the C. elegans Genetics Centre (funded by the NIH National Centre for Research Resources) for providing strains. We thank R. Fischer for generation of the monoclonal anti-MEL-26 antibody, P. Gönczy for introducing L.P. to C. elegans and for sharing material and reagents, P. Weissert for help with worm liquid cultures, J. M. Bellanger and I. Sumara for suggestions, P. Wiget for help with microscopy, and P. Gönczy for critical reading of the manuscript. L.P. was supported by a Long-Term Fellowship from the Federation of European Biochemical Societies (FEBS) and a Fellowship from Roche, T.K. by a predoctoral fellowship from the American Heart Association, J.H.W. by an NIH Molecular Biology Training Grant, P.E.M. by grants from the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research, B.B. by the NIH and M.P. by the ETHZ and the Swiss National Science Foundation.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Lionel Pintard or Matthias Peter.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pintard, L., Willis, J., Willems, A. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing