Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of leaf morphogenesis by microRNAs

Abstract

Plants with altered microRNA metabolism have pleiotropic developmental defects, but direct evidence for microRNAs regulating specific aspects of plant morphogenesis has been lacking. In a genetic screen, we identified the JAW locus, which produces a microRNA that can guide messenger RNA cleavage of several TCP genes controlling leaf development. MicroRNA-guided cleavage of TCP4 mRNA is necessary to prevent aberrant activity of the TCP4 gene expressed from its native promoter. In addition, overexpression of wild-type and microRNA-resistant TCP variants demonstrates that mRNA cleavage is largely sufficient to restrict TCP function to its normal domain of activity. TCP genes with microRNA target sequences are found in a wide range of species, indicating that microRNA-mediated control of leaf morphogenesis is conserved in plants with very different leaf forms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: jaw-D mutations and effect of jaw-D on TCP genes.
Figure 2: JAW encodes a microRNA.
Figure 3: miR-JAW and miR159 expression.
Figure 4: Identification of miRNA-guided cleavage products.
Figure 5: Expression pattern of TCP4 mRNA.
Figure 6: Effects of miRNA-resistant transgenes and trans-complementation of jaw-1D.

References

  1. 1

    Nath, U., Crawford, B. C., Carpenter, R. & Coen, E. Genetic control of surface curvature. Science 299, 1404–1407 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Cubas, P., Lauter, N., Doebley, J. & Coen, E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Plasterk, R. H. RNA silencing: the genome's immune system. Science 296, 1263–1265 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001)

    Article  Google Scholar 

  7. 7

    Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002)

    CAS  Article  Google Scholar 

  8. 8

    Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002)

    CAS  Article  Google Scholar 

  9. 9

    Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484–1495 (2002)

    CAS  Article  Google Scholar 

  10. 10

    Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231–5243 (1999)

    CAS  PubMed  Google Scholar 

  11. 11

    Golden, T. A. et al. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130, 808–822 (2002)

    Article  Google Scholar 

  12. 12

    Kasschau, K. D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4, 205–217 (2003)

    CAS  Article  Google Scholar 

  13. 13

    Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Weigel, D. et al. Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013 (2000)

    CAS  Article  Google Scholar 

  15. 15

    Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B. & Bowman, L. H. A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc. Natl Acad. Sci. USA 99, 15228–15233 (2002)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Mayer, U., Torres Ruiz, R. A., Berleth, T., Miséra, S. & Jürgens, G. Mutations affecting body organization in the Arabidopsis embryo. Nature 353, 402–407 (1991)

    ADS  Article  Google Scholar 

  19. 19

    Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. & Tasaka, M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Hadfi, K., Speth, V. & Neuhaus, G. Auxin-induced developmental patterns in Brassica juncea embryos. Development 125, 879–887 (1998)

    CAS  PubMed  Google Scholar 

  21. 21

    Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999)

    CAS  Article  Google Scholar 

  22. 22

    Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993)

    CAS  Article  Google Scholar 

  24. 24

    Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993)

    CAS  Article  Google Scholar 

  25. 25

    Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Kawasaki, H. & Taira, K. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 423, 838–842 (2003)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002)

    ADS  Article  Google Scholar 

  29. 29

    McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Weigel, D. & Glazebrook, J. Arabidopsis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2002)

    Google Scholar 

  31. 31

    Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15, doi:10.1093/nar/gng015 (2003)

  32. 32

    Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996)

    CAS  Article  Google Scholar 

  33. 33

    Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990)

    CAS  Article  Google Scholar 

  34. 34

    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    CAS  Article  Google Scholar 

  35. 35

    Swofford, D. L. PAUP: A computer program for phylogenetic inference using maximum parsimony. Gen. Physiol. 102, 9A (1993)

  36. 36

    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)

    CAS  Article  Google Scholar 

  37. 37

    Rozas, J. & Rozas, R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174–175 (1999)

    CAS  Article  Google Scholar 

  38. 38

    Citerne, H. L., Luo, D., Pennington, R. T., Coen, E. & Cronk, Q. C. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiol. 131, 1042–1053 (2003)

    CAS  Article  Google Scholar 

  39. 39

    Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)

    CAS  Article  Google Scholar 

  40. 40

    Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science published online 31 July 2003 (doi:10.1126/science.1088060)

Download references

Acknowledgements

We thank I. Puga-Gonzalez for assistance and V. Ambros, S. Balasubramanian, J. Chory, M.-C. Kim, J. Lohmann, Y. Kobayashi and J. Spatafora for advice and discussion. This work was supported by fellowships from CONICET and Human Frontier Science Program Organization to J.F.P., from Life Sciences Research Foundation/US Department of Energy to X.W.; by grants from NSF and NIH to J.C.C. and NIH to D.W.; and by the Max Planck Society. D.W. is a Director of the Max Planck Institute.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to James C. Carrington or Detlef Weigel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palatnik, J., Allen, E., Wu, X. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003). https://doi.org/10.1038/nature01958

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing