Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The evolutionary inheritance of elemental stoichiometry in marine phytoplankton


Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories1. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies2,3,4. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment5. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C:N:P composition varies between phyla and superfamilies.
Figure 2: Elemental profiles differentiate the green and red superfamilies.

Similar content being viewed by others


  1. Haeckel, E. Plankton-Studien. Vergleichende Untersuchungen über die Bedeutung und Zusammensetzung der pelagischen Fauna and Flora (G. Fischer, Jena, 1890)

    Book  Google Scholar 

  2. Delwiche, C. F. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 154, S164–S177 (1999)

    Article  CAS  Google Scholar 

  3. Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Palmer, J. D. The symbiotic birth and spread of plastids: how many times and howdunit? J. Phycol. 39, 4–11 (2003)

    Article  CAS  Google Scholar 

  5. Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell, Malden, MA, 1997)

    Google Scholar 

  6. Redfield, A. C. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 176–192 (Liverpool Univ. Press, Liverpool, 1934)

    Google Scholar 

  7. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological suquestration of CO2 in the ocean. Nature 387, 272–275 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans (Prentice-Hall, New Jersey, 1942)

    Google Scholar 

  9. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of the Elements from Molecules to the Biosphere (Princeton Univ. Press, Princeton, 2002)

    Google Scholar 

  10. Falkowski, P. G. Rationalizing elemental ratios in unicellular algae. J. Phycol. 36, 3–6 (2000)

    Article  CAS  Google Scholar 

  11. Geider, R. J. & LaRoche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002)

    Article  Google Scholar 

  12. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, New York, 1999)

    Book  Google Scholar 

  13. Raven, J. A., Evans, M. C. W. & Korb, R. E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 60, 111–149 (1999)

    Article  CAS  Google Scholar 

  14. Falkowski, P. G., Owens, T. G., Ley, A. C. & Mauzerall, D. C. Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol. 68, 969–973 (1981)

    Article  CAS  Google Scholar 

  15. Price, N. M. & Morel, F. M. M. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660 (1990)

    Article  ADS  CAS  Google Scholar 

  16. Lee, J. G. & Morel, F. M. M. Replacement of zinc by cadmium in marine phytoplankton. Mar. Ecol. Prog. Ser. 127, 305–309 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Grzebyk, D., Schofield, O., Vetriani, C. & Falkowski, P. G. The Mesozoic radiation of eukaryotic algae: The portable plastid hypothesis. J. Phycol. 39, 259–267 (2003)

    Article  CAS  Google Scholar 

  18. Whitfield, M. Interactions between phytoplankton and trace metals in the ocean. Adv. Mar. Biol. 41, 3–128 (2001)

    Google Scholar 

  19. Williams, R. J. P. & da Silva, J. J. R. F. The Natural Selection of the Chemical Elements (Clarendon, Oxford, 1996)

    Google Scholar 

  20. Andar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and the evolution: A bioinorganic bridge? Science 297, 1137–1142 (2002)

    Article  ADS  Google Scholar 

  21. Des Marais, D. J. When did photosynthesis emerge on Earth? Science 289, 1703–1705 (2000)

    Google Scholar 

  22. Falkowski, P. G. et al. in Coccolithophores: Molecular Processes to Global Impact (eds Thierstein, H. & Young, J.) (Springer, Berlin, in the press)

  23. Price, N. M. et al. Preparation and chemistry of the artificial algal culture medium Aquil. Biol. Oceanogr. 6, 443–461 (1988/89)

    Google Scholar 

  24. Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. (submitted)

  25. Cullen, J. T., Field, T. S. & Sherrell, R. M. The determination of trace elements in filtered suspended marine particulate material by sector field HR-ICP-MS. J. Anal. At. Spectrom. 16, 1307–1312 (2001)

    Article  CAS  Google Scholar 

  26. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Ihaka, R. & Gentleman, R. R. Language for data analysis and graphics. J. Comp. Graph. Stat. 5, 299–314 (1996)

    Google Scholar 

Download references


We thank K. Wyman, C. Fuller, P. Field and R. Sherrell for assisting us with the elemental analysis, and L. Hedin, R. Sherrell and J. Raven for comments. This work was supported by the National Science Foundation ‘Evolution and Radiation of Eukaryotic Phytoplankton Taxa’ (EREUPT) Biocomplexity Program (Rutgers University) and the Centre for Environmental Bioinorganic Chemistry at the Princeton Environmental Institute (Princeton University).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Antonietta Quigg or Paul G. Falkowski.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quigg, A., Finkel, Z., Irwin, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing