Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films


The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor–acceptor heterojunction1,2 that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials3,4,5: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor–acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams of types of organic donor–acceptor photovoltaic cells and SEM images of the surface of a 5,000-Å-thick CuPc:PTCBI film on ITO.
Figure 2: SEM images of cross-sections of a 5,000-Å-thick CuPc:PTCBI(4:1) film on ITO.
Figure 3: Bragg–Brentano X-ray diffractograms of a 5,000-Å-thick film on ITO using the Cu-Kα line.
Figure 4: The room-temperature external quantum efficiency after annealing at various temperatures of bilayer and multi-layer devices.
Figure 5: Parameters affecting the room-temperature power conversion efficiency.

Similar content being viewed by others


  1. Tang, C. W. A two-layer organic solar cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Yu, G., Zhang, C. & Heeger, A. J. Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes. Appl. Phys. Lett. 64, 1540–1542 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating networks. Nature 376, 498–500 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Granström, M. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257 (1998)

    Article  ADS  Google Scholar 

  5. Yu, G., Gao, J., Hummelen, J., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Padinger, F., Rittberger, R. S. & Sariciftci, N. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003)

    Article  CAS  Google Scholar 

  8. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Aernouts, T. et al. Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films 403–404, 297–303 (2002)

    Article  ADS  Google Scholar 

  10. Feng, W., Fujii, A., Lee, S., Wu, H. & Yoshino, K. Broad spectral sensitization of organic photovoltaic heterojunction device by perylene and C60 . J. Appl. Phys. 88, 7120–7123 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Dittmer, J. J. et al. Crystal network formation in organic solar cells. Sol. Energy Mater. Sol. Cells 61, 53–61 (2000)

    Article  CAS  Google Scholar 

  12. Tsuzuki, T., Shirota, Y., Rostalski, J. & Meissner, D. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Sol. Energy Mater. Sol. Cells 61, 1–8 (2000)

    Article  CAS  Google Scholar 

  13. Geens, W., Aernouts, T., Poortmans, J. & Hadziioannou, G. Organic co-evaporated films of a PPV-pentamer and C-60: model systems for donor/acceptor polymer blends. Thin Solid Films 403–404, 438–443 (2002)

    Article  Google Scholar 

  14. Hiramoto, M., Suemori, K. & Yokoyama, M. Photovoltaic properties of ultramicrostructure-controlled organic co-deposited films. Jpn. J. Appl. Phys. 41, 2763–2766 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Halls, J. J. M. & Friend, R. H. The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synth. Metals 85, 1307–1308 (1997)

    Article  CAS  Google Scholar 

  16. Peumans, P. & Forrest, S. R. Very-high-efficiency double-heterostructure copper phthalacyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126–128 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Peumans, P., Bulovic, V. & Forrest, S. R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)

    Article  CAS  Google Scholar 

  19. Kim, J., Lee, J., Han, C., Lee, N. & Chung, I.-J. Effect of thermal annealing on the lifetime of polymer light-emitting diodes. Appl. Phys. Lett. 82, 4238–4240 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Niu, Y., Hou, Q., Yuan, M. & Cao, Y. Effects of thermal annealing on light-emitting devices based on fluorene-copolymers with thiophene and ethylenedioxythienylene. Synth. Met. 135–136, 477–478 (2003)

    Article  Google Scholar 

  21. Lee, T.-W. & Park, O. O. Effect of electrical annealing on the luminous efficiency of thermally annealed polymer light-emitting diodes. Appl. Phys. Lett. 77, 3334–3336 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Prabakaran, R., Kesavamoorthy, R., Reddy, G. & Xavier, F. Structural investigation of copper phthalocyanine thin films using X-ray diffraction, Rama scattering and optical absorption measurements. Phys. Stat. Sol. 229, 1175–1186 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Baldo, M. A. & Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201 (2001)

    Article  ADS  Google Scholar 

  24. Peumans, P., Bulovic, V. & Forrest, S. R. Efficient photon harvesting at high optical intensities in ultrathin double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 76, 2650–2652 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Burrows, P. E. et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. 79, 7991–8006 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Raabe, D. “Cellular automata in materials science with particular reference to recrystallization simulation”. Annu. Rev. Mater. Res. 32, 36–76 (2002)

    Article  Google Scholar 

  27. Shtein, M., Gossenberger, H. F., Benziger, J. B. & Forrest, S. R. Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J. Appl. Phys. 89, 1470–1476 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Israelachvili, J. N. Intermolecular and Surface Forces 176–212 (Academic, London, 1992)

    Google Scholar 

Download references


We thank N. Stroustrup for his assistance, and gratefully acknowledge the financial support of the Air Force Office of Scientific Research, the National Renewable Energy Laboratory, and the Global Photonic Energy Corporation. S.U. is currently on leave from Nippon Oil Corporation, Central Technical Research Laboratory, 8 Chidori-cho, Naka-ku, Yokohama 231-0815, Japan.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen R. Forrest.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peumans, P., Uchida, S. & Forrest, S. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing